18.03 Substitution Methods (old topic 12 notes) Straight substitution dy = F (ax + by + c) dx Let v = ax + by + c ⇒ dv dx dy = a + b dx = a + bF (v): separable DE dy = (x + 9y + 7)2 . Example: Solve dx dy dv Let Rv = x + 9yR + 7 ⇒ dx = 1 + 9 dx = 1 + 9v 2 dv dx ⇒ 13 tan−1 3v = x + C ⇒ v = 31 tan(3x + C) ⇒ 1+9v 2 = ⇒ x + 9y + 7 = 31 tan(3x + C) ⇒ y = 19 ( 13 tan(3x + C) − x − 7) Note: y only defined on an interval, e.g. if C = 0 then only defined for −π/2 < 3x < π/2. dy 5 Example: Solve dx R =dv(x +Ry + 1) ⇒ v = x + y + 1 ⇒ Separate variables: 1+v5 = dx –painful dv dx = 1 + v5. Homogeneous equations: y 0 = f (y/x) Example: Solve y 0 = x3 +3xy 2 +y 3 x2 y+xy 2 3 –same degree top and bottom. Divide top and bottom by x ⇒ y 0 = Example: Solve y 0 = xy x2 −y 2 2 1+3(y/x)2 +(y/x)3 . y/x+(y/x)2 (prime means deriv. w.r.t. x). y/x Divide top and bottom by x ⇒ y 0 = 1−(y/x) 2 0 0 Let w = y/x ⇒ wx = y ⇒ w x + w = y w w3 w 0 Separable –always the case. ⇒ w0 x + w = 1−w 2 ⇒ w x = 1−w 2 − w = 1−w 2 R 1−w2 R 1 1 ⇒ dw = x dx ⇒ − 2w2 − ln w = ln x + C (implicit solution) w3 3/2 1/2 2 x Example: Solve y 0 = x y+y = y/x + (y/x)1/2 . x5/2 R dw R dx = x ⇒ 2w1/2 = ln x + C ⇒ w = ( 21 ln x + C)2 w1/2 ⇒ y = x( 21 ln x + C)2 dy Bernoulli Equations: dx + p(x)y = q(x)y n Looks almost like a linear DE. Algebra ⇒ y −n y 0 + py 1−n = q Substitute w = y 1−n ⇒ w0 = (1 − n)y −n y 0 1 ⇒ 1−n w0 + pw = q –Linear DE Note: works as long as n 6= 1 –in this case DE is already linear. Example: Solve x2 y 0 + xy + y 2 = 0 (this is also homogeneous). y 0 + x1 y = − x12 y 2 ⇒ y −2 y 0 + x1 y −1 = − x12 Let w = y −1 ⇒ w0 = −y −2 y 0 Substituting: −w0 + x1 w = − x12 ⇒ w0 − x1 w = x1R2 –Linear DE 1 Use the variation of parameters formula: wh = e− − x dx = eln x = x Z 1 1 −1 + Cx2 ⇒ w=x + C = x − + C = 1 1 x3 2x2 2x 1 2x Back substitute: y = = w Cx2 − 1 1 18.03 substitution methods Double Substitution (We won’t do this.) x+y dy = 3+x+2y . Example: Solve dx Let u = x + y, v = 3 + x + 2y Consider u the independent variable, i.e., v = v(u) dx dv x = 2u − v + 3, y = −u + v − 3 ⇒ du = 2 − du , 2−dv/du dy dy du u ⇒ dx = du · dx = −1+dv/du = v dv = 2u+v (homogeneous DE). du u+v dy du = −1 + dv du ’Flipping’ Example: Solve dx 1 dt = 3 = x3 − x2 t –Linear with t = dependent . ⇒ 2 dt x − tx dx variable). End of substitution methods notes 2
© Copyright 2026 Paperzz