Name: Algebra 2 Inverse Variation day 1 Date: Period: 1 2 3 4 5 6 7 Suppose that x and y varies inversely. Write a function that models each inverse variation. 1. x = 1 when y = 11 k= ________ inverse variation: _________ 2. x = -13 when y = 100 k= ________ inverse variation: _________ 3. x = 1 when y = 1 k= ________ inverse variation: _________ 4. x = 1.2 when y = 3 k= ________ inverse variation: _________ 5. x = 28 when y = -2 k= ________ inverse variation: _________ Suppose that x and y varies directly. Write a function that models each direct variation. 6. x = 6 and y = 12 k= ________ direct variation: _________ 7. x = 10 when y = 2 k= ________ direct variation: _________ 8. x = 7.2 when y = 3.6 k= ________ direct variation: _________ 9. x = .5 when y = 2 k= ________ direct variation: _________ 10. x = 7 when y = 10 k= ________ direct variation: _________ Is the relationship between the values in each table a direct variation, inverse variation or neither? Write equations to model the direct or inverse variation. 11. x 3 8 10 22 direct inverse neither y 15 40 50 110 equation: ___________________________ x 3 5 7 10.5 direct y 14 8.4 6 4 x .5 2.1 3.5 11 y 1 4.2 7 22 x .1 3 6 24 y 3 .1 .05 .0125 12. inverse neither equation: ___________________________ 13. 14. direct inverse neither equation: ___________________________ direct inverse neither equation: ___________________________ Review Material: Solve each as an exponential equation, place an = x after the log and rewrite as an exponent and then solve. 15. log4 128 16. log4 256 17. log8 256 18. log 4 8 19. log 2 8 20. log 49 7
© Copyright 2026 Paperzz