Answer on Question #56185 – Math

Answer on Question #56185 – Math – Algebra
1. State the x-coordinate of the x-intercept in quadrant 2 for the function
below.
𝑓 (π‘₯) = 4π‘₯ 3 βˆ’ 12π‘₯ 2 βˆ’ π‘₯ + 15
Solution
We guess a root π‘₯ = βˆ’1.
Divide
𝑓 (π‘₯) = 4π‘₯ 3 βˆ’ 12π‘₯ 2 βˆ’ π‘₯ + 15
by (π‘₯ + 1) and obtain 4π‘₯ 2 βˆ’ 16π‘₯ + 15.
Solving
4π‘₯ 2 βˆ’ 16π‘₯ + 15 = 0
𝐷 = (βˆ’16)2 βˆ’ 4 βˆ™ 4 βˆ™ 15 = 162 βˆ’ 16 βˆ™ 15 = 16 βˆ™ (16 βˆ’ 15) = 16
16βˆ’4
12
3
π‘₯1 =
= = = 1.5,
π‘₯2 =
2βˆ™4
16+4
2βˆ™4
=
8
20
8
2
5
= = 2.5.
2
Roots of
𝑓 (π‘₯) = 4π‘₯ 3 βˆ’ 12π‘₯ 2 βˆ’ π‘₯ + 15
are as follows:
x=-1;
x=1.5;
x=2.5.
Only x=-1 is in quadrant 2.
Answer: -1.
2. State the y-coordinate of the y-intercept for the function below.
𝑓 (π‘₯) = 4π‘₯ 3 βˆ’ 12π‘₯ 2 βˆ’ π‘₯ + 15
Solution
3
y-intercept= f(0) = 4 βˆ™ 0 βˆ’ 12 βˆ™ 02 βˆ’ 0 + 15 =15
Answer: 15.
3. What is the maximum number of turns in the graph of this function?
f(x) = 4π‘₯ 3 βˆ’ 12π‘₯ 2 βˆ’ π‘₯ + 15
Solution
It is a third degree polynomial, then the maximum number of turns is
two.
Answer: 2.
4. What is the local maximum value of the function? (Round answer to
the nearest thousandth)
g(x) =π‘₯ 3 + 5π‘₯ 2 βˆ’ 17π‘₯ βˆ’ 21
Solution
2
g’(x) =3π‘₯ + 10π‘₯ βˆ’ 17
If 3π‘₯ 2 + 10π‘₯ βˆ’ 17 = 0, then 𝐷 = 102 βˆ’ 4 βˆ™ 3 βˆ™ (βˆ’17) = 304
βˆ’10 + √304 βˆ’5 + √76
π‘₯1 =
=
2βˆ™3
3
βˆ’10 + √304 βˆ’5 βˆ’ √76
π‘₯1 =
=
2βˆ™3
3
5
2√19
3
5
3
2√19
g’=0 if π‘₯ = βˆ’ ±
g’>0 if π‘₯ < βˆ’ βˆ’
5
g’<0 if βˆ’ βˆ’
3
3
2√19
3
,
5
2√19
3
3
<π‘₯<βˆ’ +
3
5
2√19
3
3
g’>0 if π‘₯ > βˆ’ +
,
.
5
2√19
3
3
So, π‘₯π‘šπ‘Žπ‘₯ = βˆ’ βˆ’
corresponds to local maximum.
5
2√19
3
3
3
2
Then, π‘”π‘šπ‘Žπ‘₯ = 𝑔(π‘₯π‘šπ‘Žπ‘₯ ) = π‘₯π‘šπ‘Žπ‘₯
+ 5π‘₯π‘šπ‘Žπ‘₯
βˆ’ 17π‘₯π‘šπ‘Žπ‘₯ βˆ’ 21 = (βˆ’ βˆ’
5
2√19
3
3
5 (βˆ’ βˆ’
2
5
2√19
3
3
) βˆ’ 17 (βˆ’ βˆ’
) βˆ’ 21 =
16
27
(28 + 19√19) β‰… 65.671
Answer: 65.671.
www.AssignmentExpert.com
3
) +