Partial Fraction Decomposition Example:

Partial Fraction Decomposition Example:
π‘₯+2
𝐴 𝐡
𝐢
𝐷
= + 2+
+
2
(π‘₯ + 1) (π‘₯ + 1)2
+ 1)
π‘₯ π‘₯
π‘₯ 2 (π‘₯
=
𝐴 π‘₯(π‘₯ + 1)2 𝐡 (π‘₯ + 1)2
𝐢
π‘₯ 2 (π‘₯ + 1)
𝐷
π‘₯2
βˆ™
+
βˆ™
+
βˆ™
+
βˆ™
π‘₯ π‘₯(π‘₯ + 1)2 π‘₯ 2 (π‘₯ + 1)2 (π‘₯ + 1) π‘₯ 2 (π‘₯ + 1) (π‘₯ + 1)2 π‘₯ 2
=
𝐴π‘₯(π‘₯ + 1)2 𝐡(π‘₯ + 1)2 𝐢π‘₯ 2 (π‘₯ + 1)
𝐷π‘₯ 2
+
+
+
π‘₯ 2 (π‘₯ + 1)2 π‘₯ 2 (π‘₯ + 1)2 π‘₯ 2 (π‘₯ + 1)2 π‘₯ 2 (π‘₯ + 1)2
=
𝐴π‘₯(π‘₯ + 1)2 + 𝐡(π‘₯ + 1)2 + 𝐢π‘₯ 2 (π‘₯ + 1) + 𝐷π‘₯ 2
π‘₯ 2 (π‘₯ + 1)2
=
𝐴π‘₯(π‘₯ 2 + 2π‘₯ + 1) + 𝐡(π‘₯ 2 + 2π‘₯ + 1) + 𝐢π‘₯ 3 + 𝐢π‘₯ 2 + 𝐷π‘₯ 2
π‘₯ 2 (π‘₯ + 1)2
=
𝐴π‘₯ 3 + 2𝐴π‘₯ 2 + 𝐴π‘₯ + 𝐡π‘₯ 2 + 2𝐡π‘₯ + 𝐡 + 𝐢π‘₯ 3 + 𝐢π‘₯ 2 + 𝐷π‘₯ 2
π‘₯ 2 (π‘₯ + 1)2
=
(𝐴 + 𝐢)π‘₯ 3 + (2𝐴 + 𝐡 + 𝐢 + 𝐷)π‘₯ 2 + (𝐴 + 2𝐡)π‘₯ + 𝐡
π‘₯ 2 (π‘₯ + 1)2
We are trying to find A, B, C, and D such that
0π‘₯ 3 + 0π‘₯ 2 + 1π‘₯ + 2 = (𝐴 + 𝐢)π‘₯ 3 + (2𝐴 + 𝐡 + 𝐢 + 𝐷)π‘₯ 2 + (𝐴 + 2𝐡)π‘₯ + 𝐡
Thus, (i) A + C = 0 ; (ii) 2A + B + C + D = 0 ; (iii) A + 2B = 1 ; and (iv) B = 2.
Thus, we have a system with 4 equations. Since B = 2, equation (iii) gives us A = -3.
Substituting -3 for A into equation (i) gives us that C = 3.
Finally, substituting -3 for A, 2 for B, and 3 for C into equation (ii) gives us that D = 1.
Thus,
π‘₯+2
βˆ’3 2
3
1
=
+ 2+
+
2
(π‘₯
(π‘₯
+ 1)
π‘₯
π‘₯
+ 1)
+ 1)2
π‘₯ 2 (π‘₯
Although solving for A, B, C, and D in this case was a relatively short process, sometimes it may involve more steps.
In these instances, it is often convenient to use matrix algebra. Our equations above can be written as follows:
i) A + 0B + C + 0D = 0
ii) 2A + B + C + D = 0
iii) A + 2B + 0C + 0D = 1
iv) 0A + B + 0C + 0D = 2
Which can be translated into the following matrix:
1
2
1
0
0
1
2
1
1
1
0
0
0
1
0
0
0
0
1
2
Then, using the rref function under [2nd] [Matrix]
[MATH] on the calculator, we can reduce the matrix.
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
-3
2
3
1
Thus, A = -3, B = 2, C = 3, and D = 1. So, we get the
same solution as we did before.
Partial Fraction Decomposition Set Up Examples:
π‘₯+1
𝐴
𝐡
= +
π‘₯(π‘₯ + 1) π‘₯ (π‘₯ + 1)
π‘₯+2
𝐴 𝐡π‘₯ + 𝐢
= + 2
2
π‘₯(π‘₯ + 1) π‘₯ (π‘₯ + 1)
π‘₯+3
𝐴 𝐡
𝐢
= + 2+
(π‘₯ + 1)
+ 1)
π‘₯ π‘₯
π‘₯ 2 (π‘₯
π‘₯+4
𝐴 𝐡
𝐢
𝐷
= + 2+
+
2
(π‘₯ + 1) (π‘₯ + 1)2
+ 1)
π‘₯ π‘₯
π‘₯ 2 (π‘₯
π‘₯+5
𝐴 𝐡π‘₯ + 𝐢
𝐷π‘₯ + 𝐸
= + 2
+ 2
2
2
π‘₯(π‘₯ + 1)
π‘₯ (π‘₯ + 1) (π‘₯ + 1)2
π‘₯+6
𝐴 𝐡
𝐢π‘₯ + 𝐷
𝐸π‘₯ + 𝐹
= + 2+ 2
+ 2
2
(π‘₯ + 1) (π‘₯ + 1)2
+ 1)
π‘₯ π‘₯
π‘₯ 2 (π‘₯ 2
π‘₯+7
𝐴
𝐡
𝐢π‘₯ + 𝐷
𝐸π‘₯ + 𝐹
=
+
+ 2
+ 2
2
2
2
2
(π‘₯ + 1) (π‘₯ + 1)
(π‘₯ + 1) (π‘₯ + 1)
(π‘₯ + 1) (π‘₯ + 1)2
π‘₯+8
𝐴
𝐡
𝐢
=
+
+
3
2
(π‘₯ + 1)
(π‘₯ + 1) (π‘₯ + 1)
(π‘₯ + 1)3