EE206 Solutions - Assignment 1 1. Evaluate the following derivatives *(a) d dx √ ln(4x x + 7) √ 1 ln(4x x + 7) = ln(4) + ln(x) + ln(x + 7) 2 √ d 1 3x + 14 1 =⇒ ln(4x x + 7) = + = dx x 2(x + 7) 2x(x + 7) (b) d dy y tan(y)ey [4] d dy d (c) dz √ y tan(y)ey = tan(y)ey + y sec2 (y)ey + y tan(y)ey 6 + 6z [5] ez d dz (d) d dt √ √ 6 + 6z 6 + 6z 1 6 √ =− + z z e e 2 ez 6 + 6z −3(2z + 1) = z√ e 6 + 6z − ln(cos(t)) [5] d dt − ln(cos(t)) = − − sin(t) cos(t) = tan(t) 2. Evaluate the following integrals R *(a) x cot(x2 + 1)dx u = x2 + 1 Z du = 2x dx Z 1 x cot(x + 1)dx = cot(u)du 2 Z 1 cos(u) = du 2 sin(u) 2 v = sin(u) dv = cos(u) du Z 1 1 = dv 2 v 1 1 = ln |v| + c = ln | sin(u)| + c 2 2 1 2 = ln | sin(x + 1)| + c 2 1 (b) R √ cos( x) √ dx x [5] u= Z (c) R 1 t ln t dt √ x du = 1 1 √ dx 2 x √ Z cos( x) √ dx = 2 cos(u)du x = 2 sin(u) + c √ = 2 sin( x) + c [5] u = ln(t) Z du = 1 dt t Z 1 1 dt = du t ln t u = ln |u| + c = ln | ln(t)| + c *(d) R eax sin(bx)dx Z Z udv = uv − u = sin(bx) du = b cos(bx) dx 1 v = eax a dv = eax dx Z =⇒ e ax 1 b sin(bx)dx = sin(bx)eax − a a dv = eax dx =⇒ e ax Z eax cos(bx) dx du = −b sin(bx) dx 1 v = eax a u = cos(bx) Z vdu Z 1 b 1 b ax ax ax sin(bx)dx = sin(bx)e − cos(bx)e + e sin(bx) dx a a a a Z b2 1+ 2 eax sin(bx)dx = a Z a2 + b2 eax sin(bx)dx = a2 Z =⇒ eax sin(bx)dx = 1 b sin(bx)eax − 2 cos(bx)eax a a 1 b sin(bx)eax − 2 cos(bx)eax a a a b sin(bx)eax − 2 cos(bx)eax a2 + b2 a + b2 a sin(bx) − b cos(bx) = eax +c a2 + b2 2 (e) R t sin(t)dt [5] u=t du = dt v = − cos(t) dv = sin(t) Z Z t sin(t)dt = −t cos(t) + cos(t)dt = −t cos(t) + sin(t) + c (f) R ln(y)dy [5] u = ln(y) du = dv = dy v=y 1 dy y Z Z ln(y)dy = y ln(y) − 1 dy = y ln(y) − y + c 3. State whether the following differential equations are linear or nonlinear. Give the order of each equation. *(a) (1 − x)y 00 − 4xy 0 + 5y = cos x linear (in y): 2nd order *(b) (y 2 − 1)dx + xdy = 0 non linear in y: 1st order linear in x: 1st order *(c) t5 y (4) − t3 y 00 + 6y = 0 linear in y: 4th order (d) (sin θ)y 00 − (cos θ)y 0 = 2 [2] linear in y: 2nd order 4 d3 y dy (e) x dx + y = 0[2] 3 − dx non linear in y: 3rd order (f) udv + (v + uv − ueu )du = 0 [2] linear in v, non linear in u: 1st order [2] d2 u dr2 + du dr + u = cos(r + u) non linear: 2nd order [2] 2 (h) ẍ − 1 − ẋ3 ẋ + x = 0 (g) non linear: 2nd order [2] 3 4. Verify that the indicated functions are solutions to the given differential equations and state whether they are implicit or explicit solutions. Assume an appropriate interval I of definition. (a) x2 y 00 + xy 0 + y = 0; Explicit solution y = cos(ln(x)) [8] y = cos(ln(x)) sin(ln(x)) y0 = − x sin(ln(x)) cos(ln(x)) y 00 = − 2 x x2 Using these in the above equation gives: x2 cos(ln(x)) sin(ln(x)) sin(ln(x)) − x2 −x + cos(ln(x)) 2 2 x x x = sin(ln(x)) − cos(ln(x)) − sin(ln(x)) + cos(ln(x)) = 0 (b) 2xydx + (x2 − y)dy = 0; −2x2 y + y 2 = 1 [8] Implicit solution. −2x2 y + y 2 dy dy −2(2x)y − 2x2 + (2y) dx dx dy −4xy − 2(x2 − y) dx dy 2xy + (x2 − y) dx 2xydx + (x2 − y)dy *(c) xy 0 + xy 2 − y = 0; Explicit solution y= =1 =0 =0 =0 =0 2x x2 +c 2x +c 2 4x y2 = 2 (x + c)2 2(x2 + c) − 4x2 y0 = (x2 + c)2 −2x2 + 2c = (x2 + c)2 y= x2 Using these in the above equation gives: −2x3 + 2cx 4x3 2x + − 2 2 2 2 2 (x + c) (x + c) x +c = −2x3 + 2cx + 4x3 − 2x(x2 + c) (x2 + c)2 = −2x3 + 2cx + 4x3 − 2x3 − 2cx =0 (x2 + c)2 4 (d) dX dt = (X − 1)(1 − 2X); ln Implicit solution 2X−1 X−1 = t [8] 2X − 1 =t ln X −1 X −1 (X − 1)(2) − (2X − 1)(1) dX =1 2X − 1 (X − 1)2 dt 2X − 2 − 2X + 1 dX =1 (2X − 1)(X − 1) dt dX −1 =1 (2X − 1)(X − 1) dt 1 dX =1 (1 − 2X)(X − 1) dt dX = (X − 1)(1 − 2X) dt (e) y 00 + y = tan x; y = −(cos x) ln(sec x + tan x) [8] Explicit solution y = −(cos x) ln(sec x + tan x) 1 y = (sin x) ln(sec x + tan x) − (cos x) sec x + tan x = (sin x) ln(sec x + tan x) − (cos x)(sec x) 0 Using sec x = 1 cos x = (sin x) ln(sec x + tan x) − 1 00 y = (cos x) ln(sec x + tan x) + (sin x)(sec x) = −y + tan x Using these in the above equation gives: y 00 + y = −y + y + tan x = tan x 5 (sec x tan x + sec2 x) 5. Use the Separation of Variables technique to solve the following first order differential equations. dy (a) (1 − x2 ) dx + x(y − a) = 0 [8] dy + x(y − a) = 0 dx dy = x(a − y) (1 − x2 ) dx Z Z 1 x dy = dx a−y 1 − x2 ⇒ du = −2xdx ⇒ − 21 du = xdx Z Z 1 1 1 dy = − du a−y 2 u 1 (−1) ln(a − y) = − ln(u) + c 2 1 ln(a − y) = ln(u 2 ) − c 1 ln(a − y) = ln (1 − x2 ) 2 − c ! a−y = −c ln 1 (1 − x2 ) 2 a−y 1 = C (1 − x2 ) 2 (1 − x2 ) Let u = 1 − x2 1 y = a − C(1 − x2 ) 2 dy = e−y + e−2x−y ; (b) ex y dx y(0) = 0 [8] dy = ey−x e−y + e−2x−y dx y dy e y = e−x + e−3x dx ey y dy = e−x + e−3x dx Z Z y e y dy = e−x + e−3x dx ey−x ex y u=y y dv = e dy du = dy v = ey Z 1 ey dy = −ex − e−3x + c 3 1 yey − ey = −ex − e−3x + c 3 yey − Imposing initial conditions: y(0) = 0 1 1 + c =⇒ c = 3 3 1 −3x 1 y x (y − 1)e = −e − e + 3 3 −1 = −1 − 6 (c) dy dx = −2x tan y; y(0) = π 2 [8] dy = −2x tan y dx 1 dy = −2xdx tan y cos y dy = −2xdx sin y du = cos ydy 1 du = −2xdx Z u Z 1 du = −2 xdx u x2 ln(u) = −2 + c = −x2 + c 2 2 ln(sin y) = −x + c Let u = sin y; sin y = e−x 2 +c y(x) = sin−1 (e−x Imposing initial conditions: y(0) = 2 +c π 2 c y(0) = sin−1 (e ) = ) π 2 π ⇒ ec = sin( ) = 1 2 2 y(x) = sin−1 (e−x ) dy *(d) (1 + x2 ) dx + y 2 = 0; (1 + x2 ) Let x = tan(u); y(0) = 2 π dy + y2 = 0 dx 1 dy 1 =− 2 y dx 1 + x2 Z Z 1 1 dy = − dx 2 y 1 + x2 dx = sec2 (u)du − 1 y 1 y 1 y 1 y 1 y Z sec2 (u) du + c =− 1 + tan2 (u) Z sec2 (u) = du − c sec2 (u) Z = 1 du − c =u−c = arctan(x) − c y(x) = 1 arctan(x) − c Imposing initial conditions: y(0) = π2 1 2 π y(0) = = =⇒ c = − −c π 2 1 y(x) = arctan(x) + π/2 7
© Copyright 2026 Paperzz