3-2 3-2 Multiplying Polynomials Warm Up Lesson Presentation Lesson Quiz Holt McDougal Algebra Holt McDougal Algebra 22 3-2 Multiplying Polynomials Warm Up Multiply. 1. x(x3) x4 2. 3x2(x5) 3x7 3. 2(5x3) 10x3 4. x(6x2) 6x3 5. xy(7x2) 7x3y 6. 3y2(–3y) –9y3 Holt McDougal Algebra 2 3-2 Multiplying Polynomials Objectives Multiply polynomials. Use binomial expansion to expand binomial expressions that are raised to positive integer powers. Holt McDougal Algebra 2 3-2 Multiplying Polynomials Essential Question • How do you use Pascal’s Triangle to expand binomials? (a + b)n Holt McDougal Algebra 2 3-2 Multiplying Polynomials To multiply a polynomial by a monomial, use the Distributive Property and the Properties of Exponents. Holt McDougal Algebra 2 3-2 Multiplying Polynomials Example 1: Multiplying a Monomial and a Polynomial Find each product. A. 4y2(y2 + 3) 4y2(y2 + 3) (4y2 y2 )+ (4y2 3) Distribute. 4y4 + 12y2 Multiply constants and add exponents. B. fg(f4 + 2f3g – 3f2g2 + fg3) fg(f4 + 2f3g – 3f2g2 + fg3) Distribute. (fg f4 )+ (fg 2f3g)+(fg -3f2g2 )+ (fg fg3) f5g + 2f4g2 – 3f3g3 + f2g4 Multiply. Holt McDougal Algebra 2 3-2 Multiplying Polynomials Check It Out! Example 1 Find each product. a. 3cd2(4c2d – 6cd + 14cd2) Distribute. 3cd2(4c2d – 6cd + 14cd2) (3cd2 4c2d)+(3cd2 –6cd) + (3cd2 14cd2) Multiply. 12c3d3 – 18c2d3 + 42c2d4 b. x2y(6y3 + y2 – 28y + 30) x2y(6y3 + y2 – 28y + 30) Distribute. (x2y 6y3 )+ (x2y y2)+(x2y –28y) + (x2y 30) 6x2y4 + x2y3 – 28x2y2 + 30x2y Multiply. Holt McDougal Algebra 2 3-2 Multiplying Polynomials To multiply any two polynomials, use the Distributive Property and multiply each term in the second polynomial by each term in the first. Keep in mind that if one polynomial has m terms and the other has n terms, then the product has mn terms before it is simplified. Holt McDougal Algebra 2 3-2 Multiplying Polynomials Example 2A: Multiplying Polynomials Find the product. Method 1 (a – 3)(2 – 5a + a2) Multiply horizontally. (a – 3)(a2 – 5a + 2) Write polynomials in standard form. Distribute a and then –3. a(a2) + a(–5a) + a(2) – 3(a2) – 3(–5a) –3(2) a3 – 5a2 + 2a – 3a2 + 15a – 6 Multiply. Add exponents. a3 – 8a2 + 17a – 6 Holt McDougal Algebra 2 Combine like terms. 3-2 Multiplying Polynomials Example 2A: Multiplying Polynomials Find the product. (a – 3)(2 – 5a + a2) Method 2 Multiply vertically. a2 – 5a + 2 a–3 – 3a2 + 15a – 6 a3 – 5a2 + 2a a3 – 8a2 + 17a – 6 Holt McDougal Algebra 2 Write each polynomial in standard form. Multiply (a2 – 5a + 2) by –3. Multiply (a2 – 5a + 2) by a, and align like terms. Combine like terms. 3-2 Multiplying Polynomials Find the product for multiplying two trinomials. (y2 – 7y + 5)(y2 – y – 3) Multiply each term of one polynomial by each term of the other. Use a table to organize the products. y2 y2 –y –3 –y3 –3y2 –7y –7y3 7y2 21y 5 –5y –15 y4 5y2 The top left corner is the first term in the product. Combine terms along diagonals to get the middle terms. The bottom right corner is the last term in the product. y4 + (–7y3 – y3 ) + (5y2 + 7y2 – 3y2) + (–5y + 21y) – 15 y4 – 8y3 + 9y2 + 16y – 15 Holt McDougal Algebra 2 3-2 Multiplying Polynomials Check It Out! Example 2a Find the product. (3b – 2c)(3b2 – bc – 2c2) Multiply horizontally. (3b – 2c)(3b2 –bc –2c2) Distribute 3b and then –2c. 3b(3b2) + 3b(–bc) + 3b(–2c2) – 2c(3b2) – 2c(–bc) – 2c(–2c2) Multiply and Add exponents. Combine like terms. 9b3 – 3b2c – 6bc2 – 6b2c + 2bc2 + 4c3 9b3 – 9b2c – 4bc2 + 4c3 Holt McDougal Algebra 2 3-2 Multiplying Polynomials Check It Out! Example 2b Find the product. (x2 – 4x + 1)(x2 + 5x – 2) Multiply each term of one polynomial by each term of the other. Use a table to organize the products. x2 –4x 1 The top left corner is the first 2 4 3 2 x x –4x x term in the product. Combine terms along diagonals to get 2 5x 5x3 –20x 5x the middle terms. The bottom right corner is the last term in –2 –2x2 8x –2 the product. x4 + (–4x3 + 5x3) + (–2x2 – 20x2 + x2) + (8x + 5x) – 2 x4 + x3 – 21x2 + 13x – 2 Holt McDougal Algebra 2 3-2 Multiplying Polynomials Example 3: Business Application A standard Burly Box is p ft by 3p ft by 4p ft. A large Burly Box has 1.5 ft added to each dimension. Write a polynomial V(p) in standard form that can be used to find the volume of a large Burly Box. The volume of a large Burly Box is the product of the area of the base and height. V(p) = A(p) h(p) The area of the base of the large Burly Box is the product of the length and width of the box. A(p) = l(p) w(p) The length, width, and height of the large Burly Box are greater than that of the standard Burly Box. l(p) = p + 1.5, w(p) = 3p + 1.5, h(p) = 4p + 1.5 Holt McDougal Algebra 2 3-2 Multiplying Polynomials Example 3: Business Application Solve A(p) = l(p) w(p). p + 1.5 3p + 1.5 1.5p + 2.25 3p2 + 4.5p 3p2 + 6p + 2.25 Solve V(p) = A(p) h(p). 3p2 + 6p + 2.25 4p + 1.5 4.5p2 + 9p + 3.375 12p3 + 24p2 + 9p 12p3 + 28.5p2 + 18p + 3.375 The volume of a large Burly Box can be modeled by V(p) = 12p3 + 28.5p2 + 18p + 3.375 Holt McDougal Algebra 2 3-2 Multiplying Polynomials Check It Out! Example 4a Find the product. (x + 4)4 (x + 4)(x + 4)(x + 4)(x + 4) Write in expanded form. (x + 4)(x + 4)(x2 + 8x + 16) Multiply the last two binomial factors. (x2 + 8x + 16)(x2 + 8x + 16) Multiply the first two binomial factors. Distribute x2 and then 8x and then 16. x2(x2) + x2(8x) + x2(16) + 8x(x2) + 8x(8x) + 8x(16) + 16(x2) + 16(8x) + 16(16) Multiply. x4 + 8x3 + 16x2 + 8x3 + 64x2 + 128x + 16x2 + 128x + 256 x4 + 16x3 + 96x2 + 256x + 256 Holt McDougal Algebra 2 Combine like terms. 3-2 Multiplying Polynomials Expanding binomials by multiplying two polynomials at a time can often be time consuming and tedious. A quicker method for expanding binomials is through the use of Pascal’s Triangle. Holt McDougal Algebra 2 3-2 Multiplying Polynomials Notice the coefficients of the variables in the final product of (a + b)3. These coefficients are the numbers from the third row of Pascal's triangle. (The top 1 does not count as a row)! Each row of Pascal’s triangle gives the coefficients of the corresponding binomial expansion. The pattern in the table can be extended to apply to the expansion of any binomial of the form (a + b)n, where n is a whole number. Holt McDougal Algebra 2 3-2 Multiplying Polynomials This information is formalized by the Binomial Theorem, which you will study further in Pre-Calculus. Holt McDougal Algebra 2 3-2 Multiplying Polynomials Example 5: Using Pascal’s Triangle to Expand Binomial Expressions Expand the binomial expression. Method 1 a. (k – 5)3 1331 Identify the coefficients for n = 3, or row 3. Start with an exponent of 3 for the first term and descend. Begin with an exponent of 0 for the second term and ascend. [1(k)3(–5)0] + [3(k)2(–5)1] + [3(k)1(–5)2] + [1(k)0(–5)3] k3 – 15k2 + 75k – 125 Holt McDougal Algebra 2 3-2 Multiplying Polynomials Expand the binomial expression. Method 2 b. (x + 2)3 Identify the coefficients for n = 3, or row 3. 1331 Create a table using the coefficients as the 1st row. x3 x3 3 3 1 x2 x 2 22 23 Increase 2nd term 6x2 12x 8 Multiply vertically Decrease 1st term (x + 2)3 = x3 + 6x2 + 12x + 8 Holt McDougal Algebra 2 3-2 Multiplying Polynomials Check It Out! Example 5 Expand each expression. c. (x – 4)5 1 5 10 10 5 1 Identify the coefficients for n = 5, or row 5. [1(x)5(–4)0] + [5(x)4(–4)1] + [10(x)3(–4)2] + [10(x)2(–4)3] + [5(x)1(–4)4] + [1(x)0(–4)5] x5 – 20x4 + 160x3 – 640x2 + 1280x – 1024 Holt McDougal Algebra 2 3-2 Multiplying Polynomials Check It Out! Example 5 Expand the expression. d. (3x + 1)4 14641 Identify the coefficients for n = 4, or row 4. Create a table. 1 4 6 4 (3x)4 (3x)3 (3x)2 (3x)1 11 12 13 14 4(27)x3(1) 6(9)x2(1) 4(3)x(1) 1(1) 1(81)x4 1 81x4 + 108x3 + 54x2 + 12x + 1 Holt McDougal Algebra 2 3-2 Multiplying Polynomials Lesson Quiz Find each product. 1. 5jk(k – 2j) 5jk2 – 10j2k 2. (2a3 – a + 3)(a2 + 3a – 5) 2a5 + 6a4 – 11a3 + 14a – 15 3. The number of items is modeled by 0.3x2 + 0.1x + 2, and the cost per item is modeled by g(x) = –0.1x2 – 0.3x + 5. Write a polynomial c(x) that can be used to model the total cost. –0.03x4 – 0.1x3 + 1.27x2 – 0.1x + 10 4. Find the product. (y – 5)4 y4 – 20y3 + 150y2 – 500y + 625 5. Expand the expression. (3a – b)3 27a3 – 27a2b + 9ab2 – b3 Holt McDougal Algebra 2 3-2 Multiplying Polynomials Essential Question • How do you use Pascal’s Triangle to expand binomials? (a + b)n • Identify the nth row by omitting the top value of 1 as a row or by choosing the row with the value n as the second entry. • The exponent of a is n in the first term, and the exponent decreases by 1 in each successive term. • The exponent of b is 0 in the first term, and the exponent increases by 1 in each successive term. Holt McDougal Algebra 2 3-2 Multiplying Polynomials Q: When is a solution not an answer? A: When you make it in a chemistry lab. Holt McDougal Algebra 2
© Copyright 2026 Paperzz