Homework: Lesson 1

Math 8
Lesson 1
8β€’3
Problem Set
1.
Let there be a dilation from center 𝑂. Then π‘‘π‘–π‘™π‘Žπ‘‘π‘–π‘œπ‘›(𝑃) = 𝑃′ and π‘‘π‘–π‘™π‘Žπ‘‘π‘–π‘œπ‘›(𝑄) = 𝑄′ . Examine the drawing below.
What can you determine about the scale factor of the dilation?
Lesson 1
Math 8
8β€’3
Let there be a dilation from center 𝑂. Then π‘‘π‘–π‘™π‘Žπ‘‘π‘–π‘œπ‘›(𝑃) = 𝑃′ , and π‘‘π‘–π‘™π‘Žπ‘‘π‘–π‘œπ‘›(𝑄) = 𝑄′ . Examine the drawing below.
What can you determine about the scale factor of the dilation?
Let there be a dilation from center 𝑂 with a scale factor π‘Ÿ = 4. Then π‘‘π‘–π‘™π‘Žπ‘‘π‘–π‘œπ‘›(𝑃) = 𝑃′ and π‘‘π‘–π‘™π‘Žπ‘‘π‘–π‘œπ‘›(𝑄) = 𝑄′ .
|𝑂𝑃| = 3.2 cm, and |𝑂𝑄| = 2.7 cm as shown. Use the drawing below to answer parts (a) and (b).
a.
Use the definition of dilation to determine the length of 𝑂𝑃′ .
b.
Use the definition of dilation to determine the length of 𝑂𝑄’.
Lesson 1
Math 8
8β€’3
Let there be a dilation from center 𝑂 with a scale factor π‘Ÿ. Then π‘‘π‘–π‘™π‘Žπ‘‘π‘–π‘œπ‘›(𝐴) = 𝐴′ , π‘‘π‘–π‘™π‘Žπ‘‘π‘–π‘œπ‘›(𝐡) = 𝐡′ , and
π‘‘π‘–π‘™π‘Žπ‘‘π‘–π‘œπ‘›(𝐢) = 𝐢′. |𝑂𝐴| = 3, |𝑂𝐡| = 15, |𝑂𝐢| = 6, and |𝑂𝐡′ | = 5 as shown. Use the drawing below to answer
parts (a)–(c).
a.
Using the definition of dilation with lengths 𝑂𝐡 and 𝑂𝐡 β€² , determine the scale factor of the dilation.
b.
Use the definition of dilation to determine the length of 𝑂𝐴′ .
c.
Use the definition of dilation to determine the length of 𝑂𝐢 β€² .