CHM310S Spring 2010 Homework#2 Answer Key 1. A O O NH Properties MP (oC) MW (g/mol) 142 201.22 Literature Values 2.36 logKOW sat 2.53 -logC w (mol/L) n/a logKH (Latm/mol) n/a -logP (atm) Ref: Schwarzenbach et al. Environmental Organic Chemistry logKOW Fragment Type fC aromatic fH fC aromatic between rings fC fCOO aromatic f-NHFCH # 8 10 2 1 1 1 1 logKOW Constant 0.13 0.23 0.23 0.20 -0.56 -2.15 (3-1)*(-0.12) Csatw a = 0.87; b = 0.68 Polyaromatic hydrocarbons logKOW = alog(1/Csatw) + b Csatw = 1 . 10^[(logKOW – b)/a] sat C w (mol/L) = 0.376 mol/L = (0.376 mol/L)(201.22 g/mol)(1000mg/1g) Csatw (ppm) = 7.56x104 mg/L = 7.56x104 ppm sat = (0.376 mol/L)(1 L/10-3 m3) C w = 376 mol/m3 (mol/m3) Contribution 1.04 2.30 0.46 0.20 -0.56 -2.15 -0.24 1.05 Vapour Pressure and KAW Fragment Type # Constant Contribution =CH7 -0.46 -3.22 =CX3 -0.63 -1.89 X-OR 1 -0.70 -0.70 X-C(=O)R 1 -1.63 -1.63 X-NHR 1 -0.86 -0.86 X-CH3 1 -0.28 -0.28 Σaifi -8.58 logVP = Σaifi – [1.56(MP – 25)]/100 + 4.42 = -8.58 – [1.56(142–25)]/100 + 4.42 = -4.16 -4.16 = 10 VP = (6.92x10-5 mm Hg)(1 torr/1 mm Hg)(1 atm/760 torr)(101325 Pa/1 atm) = 9.22x10-3 Pa = 9.22x10-3 Pa/[(376 mol/m3)(8.314 m3Pa/Kmol)(298 K)] KAW = H/RT sat = 9.91x10-9 KAW = VP/(C wRT) 1. B Cl Cl Properties o Cl Liquid 262.78 MP ( C) MW (g/mol) Literature Values Cl Cl Cl 4.90 logKOW 4.90 -logCsatw (mol/L) 1.44 logKH (Latm/mol) 3.46 -logP (atm) Ref: Schwarzenbach et al. Environmental Organic Chemistry logKOW Fragment Type fC fH fCl FII FCH Fpolyhalo, 3 on same C # 4 2 6 1 1 2 logKOW Constant 0.20 0.23 0.06 -0.09 (8-1)*(-0.12) 1.59 Csatw a = 0.81; b = -0.20 Contribution 0.80 0.46 0.36 -0.09 -0.84 3.18 3.87 Alkanes logKOW = alog(1/Csatw) + b Csatw = 1 . 10^[(logKOW – b)/a] Csatw (mol/L) = 1.33x10-5 mol/L = (1.33x10-5 mol/L)(262.78 g/mol)(1000mg/1g) Csatw (ppm) = 3.49 mg/L = 3.49 ppm = (1.33x10-5 mol/L)(1 L/10-3 m3) Csatw 3 = 1.33x10-2 mol/m3 (mol/m ) Vapour Pressure and KAW Fragment Type # Constant Contribution =CH2 -0.46 -0.92 X-CR3 2 -0.38 -0.76 X-Cl 6 -0.79 -4.74 Σaifi -6.42 logVP = Σaifi – [1.56(MP – 25)]/100 + 4.42 = -6.42 + 4.42 (liquid) = -2.00 -2.00 = 10 VP = (1.00x10-2 mm Hg)(1 torr/1 mm Hg)(1 atm/760 torr)(101325 Pa/1 atm) = 1.33 Pa = 1.33 Pa/[(1.33x10-2 mol/m3)(8.314 m3Pa/Kmol)(298 K)] KAW = H/RT sat = 4.05x10-2 KAW = VP/(C wRT) 1. C o Properties 218 178.23 MP ( C) MW (g/mol) Literature Values 4.57 logKOW 4.46 -logCsatw (mol/L) -1.45 logKH (Latm/mol) 6.05 -logP (atm) Ref: Schwarzenbach et al. Environmental Organic Chemistry logKOW Fragment Type # Constant Contribution fC aromatic 10 0.13 1.30 fH 10 0.23 2.30 fC aromatic between rings 4 0.23 0.92 logKOW 4.52 sat C w Polyaromatic hydrocarbons a = 0.87; b = 0.68 logKOW = alog(1/Csatw) + b Csatw = 1 . 10^[(logKOW – b)/a] Csatw (mol/L) = 3.86x10-5 mol/L = (3.86x10-5 mol/L)(178.23 g/mol)(1000mg/1g) Csatw (ppm) = 6.87 mg/L = 6.87 ppm = (3.86x10-5 mol/L)(1 L/10-3 m3) Csatw 3 = 3.86x10-2 mol/m3 (mol/m ) Vapour Pressure and KAW Fragment Type # Constant Contribution =CH10 -0.46 -4.60 =CX4 -0.63 -2.52 Σaifi -7.12 logVP = Σaifi – [1.56(MP – 25)]/100 + 4.42 = -7.12 - [1.56(218-25)]/100 + 4.42 = -5.71 = 10-5.71 VP = (1.95x10-6 mm Hg)(1 torr/1 mm Hg)(1 atm/760 torr)(101325 Pa/1 atm) = 2.59x10-4 Pa =2.59x10-4Pa/[(3.86x10-2mol/m3)(8.314m3Pa/Kmol)(298 K)] KAW = H/RT KAW = VP/(CsatwRT) = 2.72x10-6 1. D O Properties o O O O Liquid 278.34 MP ( C) MW (g/mol) Literature Values 4.57 logKOW 4.47 -logCsatw (mol/L) -2.89 logKH (Latm/mol) 7.02 -logP (atm) Ref: Schwarzenbach et al. Environmental Organic Chemistry logKOW Fragment Type fC aromatic fH fC fCOO aromatic FCH Fnearby polar on adj C # 6 22 8 2 2 1 logKOW Constant 0.13 0.23 0.20 -0.56 (5-1)*(-0.12) -0.16*(-0.56-0.56) Csatw a = 1.06; b = -0.22 Phthalates logKOW = alog(1/Csatw) + b Csatw = 1 . 10^[(logKOW – b)/a] Csatw (mol/L) = 3.69x10-6 mol/L = (3.69x10-6 mol/L)(278.34 g/mol)(1000mg/1g) Csatw (ppm) = 1.03 mg/L = 1.03 ppm = (3.69x10-6 mol/L)(1 L/10-3 m3) Csatw 3 = 3.69x10-3 mol/m3 (mol/m ) OR Subst. bz with polar subst. a = 0.72; b = 1.18 logKOW = alog(1/Csatw) + b Csatw = 1 . 10^[(logKOW – b)/a] Csatw (mol/L) = 8.82x10-7 mol/L = (8.82x10-7 mol/L)(278.34 g/mol)(1000mg/1g) Csatw (ppm) = 0.246 mg/L = 0.246 ppm sat = (8.82x10-7 mol/L)(1 L/10-3 m3) C w = 8.82x10-4 mol/m3 (mol/m3) Contribution 0.78 5.06 1.60 -1.12 -0.96 0.1792 5.54 Vapour Pressure and KAW Fragment Type # Constant Contribution =CH4 -0.46 -1.84 =CX2 -0.63 -1.26 X-COOR ar 2 -1.19 -2.38 X-CH2-R 6 -0.45 -2.70 X-CH3 2 -0.28 -0.56 Σaifi -8.74 logVP = Σaifi – [1.56(MP – 25)]/100 + 4.42 = -8.74 + 4.42 = -4.32 -4.32 = 10 VP = (4.79x10-5 mm Hg)(1 torr/1 mm Hg)(1 atm/760 torr)(101325 Pa/1 atm) = 6.38x10-3 Pa If you used the Csatw for phthalates: = 6.38x10-3 Pa/[(3.69x10-3 mol/m3)(8.314 m3Pa/Kmol)(298 K)] KAW = H/RT sat = 6.98x10-4 KAW = VP/(C wRT) If you used the Csatw for subst. bz with polar subst.: = 6.38x10-3 Pa/[(8.82x10-4 mol/m3)(8.314 m3Pa/Kmol)(298 K)] KAW = H/RT = 2.92x10-3 KAW = VP/(CsatwRT) 1. E O Properties o N NH 164 232.20 MP ( C) MW (g/mol) Literature Values F F F 1.34 logKOW 1.39 -logCsatw (mol/L) n/a logKH (Latm/mol) n/a -logP (atm) Ref: Schwarzenbach et al. Environmental Organic Chemistry logKOW Fragment Type fC aromatic fH fC fCΦ fN(H)C(O)N-Φ fF Fpolyhalo, 3 on same C # 6 10 2 1 1 3 1 logKOW Constant 0.13 0.23 0.20 0.20 -2.29 -0.38 1.59 Csatw a = 0.84; b = 0.12 Misc. pesticides logKOW = alog(1/Csatw) + b Csatw = 1 . 10^[(logKOW – b)/a] Csatw (mol/L) = 0.700 mol/L = (0.700 mol/L)(232.20 g/mol)(1000mg/1g) Csatw (ppm) = 1.63x105 mg/L = 1.63x105 ppm = (0.700 mol/L)(1 L/10-3 m3) Csatw 3 = 700 mol/m3 (mol/m ) OR Subst. bz with polar subst. a = 0.72; b = 1.18 logKOW = alog(1/Csatw) + b Csatw = 1 . 10^[(logKOW – b)/a] Csatw (mol/L) = 19.6 mol/L = (19.6 mol/L)(232.20 g/mol)(1000mg/1g) Csatw (ppm) = 4.54x106 mg/L = 4.54x106 ppm = (19.6 mol/L)(1 L/10-3 m3) Csatw 3 = 1.96x104 mol/m3 (mol/m ) Contribution 0.78 2.30 0.40 0.20 -2.29 -1.14 1.59 1.84 Vapour Pressure and KAW # Constant Contribution 4 -0.46 -1.84 2 -0.63 -1.26 1 0.32 0.32 1 -6.47 -6.47 2 -0.28 -0.56 Σaifi -9.81 logVP = Σaifi – [1.56(MP – 25)]/100 + 4.42 = -9.81 – [1.56(164-25)]/100 + 4.42 = -7.56 = 10-7.56 VP = (2.76x10-8 mm Hg)(1 torr/1 mm Hg)(1 atm/760 torr)(101325 Pa/1 atm) = 3.69x10-6 Pa If you used the Csatw for misc. pesticides: = 3.69x10-6 Pa/[(700 mol/m3)(8.314 m3Pa/Kmol)(298 K)] KAW = H/RT = 2.12x10-12 KAW = VP/(CsatwRT) sat If you used the C w for subst. bz with polar subst.: = 3.69x10-6 Pa/[(1.96x104 mol/m3)(8.314 m3Pa/Kmol)(298 K)] KAW = H/RT sat = 7.60x10-14 KAW = VP/(C wRT) Fragment Type =CH=CXX-CF3 ar X-NHCONR2 ar X-CH3 1. F Cl MP (oC) MW (g/mol) Properties 305 321.97 Literature Values 6.64 logKOW sat 7.50 -logC w (mol/L) O Cl -1.30 logKH (Latm/mol) 8.80 -logP (atm) Cl Ref: Schwarzenbach et al. Environmental Organic Chemistry logKOW Fragment Type # Constant Contribution fC aromatic 12 0.13 1.56 fH 4 0.23 0.92 Φ fCl 4 0.94 3.76 fOΦ 2 0.53 1.06 Fnearby polar on adj C (Cl-Cl) 2 -0.16*(0.94+0.94) -0.6016 Fnearby polar on adj C (O-O) 2 -0.16*(0.53+0.53) -0.3392 Fnearby polar on C’s sep by 1 4 -0.08*(0.94+0.53) -0.4704 logKOW 5.89 Note: If anyone lost 0.5 marks for not accounting for Fnearby polar effects of the aromatic Cl’s, you may come by LM318 and look for Holly Lee to get that mark back. Csatw Subst. bz with polar subst. a = 0.72; b = 1.18 sat logKOW = alog(1/C w) + b Csatw = 1 . 10^[(logKOW – b)/a] Csatw (mol/L) = 8.71x10-9 mol/L = (8.71x10-9 mol/L)(178.23 g/mol)(1000mg/1g) Csatw (ppm) = 2.80x10-3 mg/L = 2.80x10-3 ppm = (8.71x10-9 mol/L)(1 L/10-3 m3) Csatw = 8.71x10-6 mol/m3 (mol/m3) Vapour Pressure and KAW Fragment Type # Constant Contribution =CH4 -0.46 -1.84 =CX8 -0.63 -5.04 X-Cl ar 4 -0.53 -2.12 X-OAr 2 -0.33 -0.66 Σaifi -9.66 logVP = Σaifi – [1.56(MP – 25)]/100 + 4.42 = -9.66 - [1.56(305-25)]/100 + 4.42 = -9.61 Cl O = 10-9.61 = (2.47x10-10 mm Hg)(1 torr/1 mm Hg)(1 atm/760 torr)(101325 Pa/1 atm) = 3.29x10-8 Pa =3.29x10-8Pa/[(8.71x10-6mol/m3)(8.314m3Pa/Kmol)(298 K)] KAW = H/RT KAW = VP/(CsatwRT) = 1.52x10-6 VP 1. G Cl o OH Properties 62 197.45 MP ( C) MW (g/mol) Literature Values 2.67 logKOW n/a -logCsatw (mol/L) n/a logKH (Latm/mol) Cl Cl n/a -logP (atm) Ref: Schwarzenbach et al. Environmental Organic Chemistry logKOW Fragment Type # Constant Contribution fC aromatic 6 0.13 0.78 fH 2 0.23 0.46 fClΦ 3 0.94 2.82 Φ fOH 1 -0.44 -0.44 Fnearby polar on adj C (Cl-OH) 2 -0.16*(0.94-0.44) -0.16 Fnearby polar on C’s sep by 1 3 -0.08*(0.94+0.94) -0.4512 logKOW 3.01 Note: If anyone lost 0.5 marks for not accounting for Fnearby polar effects of the aromatic Cl’s, you may come by LM318 and look for Holly Lee to get that mark back. Csatw Subst. bz with polar subst. a = 0.72; b = 1.18 sat logKOW = alog(1/C w) + b Csatw = 1 . 10^[(logKOW – b)/a] Csatw (mol/L) = 2.88x10-3 mol/L = (2.88x10-3 mol/L)(197.45 g/mol)(1000mg/1g) Csatw (ppm) = 569 mg/L = 569 ppm = (2.88x10-3 mol/L)(1 L/10-3 m3) Csatw 3 = 2.88 mol/m3 (mol/m ) Vapour Pressure and KAW Fragment Type # Constant Contribution =CH2 -0.46 -0.92 =CX4 -0.63 -2.52 X-Cl ar 3 -0.53 -1.59 X-OH ar 1 -1.79 -1.79 Σaifi -6.82 logVP = Σaifi – [1.56(MP – 25)]/100 + 4.42 = -6.82 - [1.56(62-25)]/100 + 4.42 = -2.98 = 10-2.98 VP = (1.05x10-3 mm Hg)(1 torr/1 mm Hg)(1 atm/760 torr)(101325 Pa/1 atm) = 0.141 Pa KAW = H/RT KAW = VP/(CsatwRT) =0.141 Pa/[(2.88 mol/m3)(8.314m3Pa/Kmol)(298 K)] = 1.97x10-5 1. H OH o Properties 31 108.14 MP ( C) MW (g/mol) Literature Values 1.96 logKOW 1.59 -logCsatw (mol/L) n/a logKH (Latm/mol) n/a -logP (atm) Ref: Schwarzenbach et al. Environmental Organic Chemistry logKOW Fragment Type # Constant Contribution fC aromatic 6 0.13 0.78 fH 7 0.23 1.61 fC 1 0.20 0.20 Φ fOH 1 -0.44 -0.44 logKOW 2.15 Csatw Subst. bz with polar subst. a = 0.72; b = 1.18 logKOW = alog(1/Csatw) + b Csatw = 1 . 10^[(logKOW – b)/a] Csatw (mol/L) = 0.0450 mol/L = (0.0450 mol/L)(108.14 g/mol)(1000mg/1g) Csatw (ppm) = 4.86x103 mg/L = 4.86x103 ppm sat = (0.0450 mol/L)(1 L/10-3 m3) C w = 45.0 mol/m3 (mol/m3) Vapour Pressure and KAW Fragment Type # Constant Contribution =CH4 -0.46 -1.84 =CX2 -0.63 -1.26 X-CH3 ar 1 -0.34 -0.34 X-OH ar 1 -1.79 -1.79 Σaifi -5.23 logVP = Σaifi – [1.56(MP – 25)]/100 + 4.42 = -5.23 - [1.56(31-25)]/100 + 4.42 = -0.904 -0.904 = 10 VP = (0.125 mm Hg)(1 torr/1 mm Hg)(1 atm/760 torr)(101325 Pa/1 atm) = 16.6 Pa = 16.6 Pa/[(45.0 mol/m3)(8.314m3Pa/Kmol)(298 K)] KAW = H/RT sat KAW = VP/(C wRT) = 1.49x10-4 Summary of physical properties logKOW VP (Pa) Csatw (ppm) -3 1.05 9.22x10 7.56x104 3.75 1.33x100 3.49 -4 4.52 2.59x10 6.87 5.54 6.38x10-3 1.03 or 0.246 0.25 3.69x10-6 4.54x106 or 1.63x105 6.98 3.29x10-8 2.80x10-3 3.01 1.41x10-1 569 2.15 1.66x101 4.86x103 Compound A B C D E F G H Metabolism of compounds A, C, and G: KAW 9.91x10-9 4.05x10-2 2.72x10-6 6.98x10-4 or 2.92x10-3 7.60x10-14 or 2.12x10-12 1.52x10-6 1.97x10-5 1.49x10-4 Multiple pathways possible. O A OH O OGlu NH C OH O OH H2O MFO OGlu OGlu G Cl Cl OGlu OH Cl Cl Cl Cl 2. O o N O O - P O n/a 291.26 MP ( C) MW (g/mol) + S Properties O Given Values logKOW Mass of lake trout (g) [Parathion]lake (ng/L) Assume density of fish (g/mL) 3.81 700 15 1 Calculations: logBCF = 0.76logKOW – 0.23 logBCF = 0.76(3.81) – 0.23 logBCF = 2.67 BCF = 102.67 BCF = 463 BCF = [Parathion]fish/[Parathion]lake [Parathion]fish = (463)(15 ng/L)(1 g/109 ng)(1 L/1 kg) = 6.95x10-6 g/kg Amount in fish = (6.95x10-6 g/kg)(0.700 kg)(1000 mg/1 g)(1000 ug/1 mg) = 4.86 ug Therefore, there is 4.86 ug of parathion in the lake trout. Multimedia Partitioning Model Exercise Use: VA = 105 m3 VW = 104 m3 VO = 1 m3 Sample Calculation for Toluene Properties Calculations 92.13 MW (g/mol) 3800 VP (Pa) sat 3 515 C w (g/m ) sat 3 = (515 g/m3)(1 mol/92.13 g) C w (mol/m ) = 5.59 mol/m3 2.69 logKOW = 102.69 KOW = 490 = VP/CsatW H (Pa·m3/mol) = 3800 Pa/5.59 mol/m3 = 680 Pa·m3/mol = H/RT KAW = (680 Pa·m3/mol)/[(8.314 Pa·m3/molK)(298 K)] = 0.274 Mtotal = MA + MW + MO Mtotal = CAVA + CWVW + COVO Mtotal = CWKAWVA + CWVW + CWKOWVO Mtotal = CW(KAWVA + VW + KOWVO) Part I: Assign arbitrary value to Mtotal, eg. Mtotal = 100 g = 100g . CW (g/m3) (0.274)(105 m3) + 104 m3 + (490)(1 m3) = 2.64x10-3 g/m3 3 = KAWCW CA (g/m ) = (0.274)(2.64x10-3 g/m3) = 7.23x10-4 g/m3 = KOWCW CO (g/m3) = (490)(2.64x10-3 g/m3) = 1.29 g/m3 = VWCW MWater (g) = (104 m3)(2.64x10-3 g/m3) = 26.4 g = VACA MAir (g) = (105 m3)(7.23x10-4 g/m3) = 72.3 g = VOCO MOctanol (g) = (1 m3)(1.29 g/m3) = 1.29 g Therefore, 26.4% of toluene is partitioning into water, 72.3% into air, and 1.3% into octanol. Use: VA = 107 m3 VW = 105 m3 VO = 1 m3 Sample Calculation for Lindane at 15oC or 288K Properties Calculations 290.9 MW (g/mol) 0.00472 (see reference for VP’s at different temperatures) VP (Pa) 7.31 (see reference for Csatw’s at different temperatures) Csatw (g/m3) sat 3 = (7.31 g/m3)(1 mol/290.9 g) C w (mol/m ) = 0.0251 mol/m3 3.80 logKOW = 103.80 KOW = 6.31x103 = VP/CsatW H (Pa·m3/mol) = 0.00472 Pa/0.0251 mol/m3 = 0.188 Pa·m3/mol = H/RT KAW = (0.188 Pa·m3/mol)/[(8.314 Pa·m3/molK)(288 K)] = 7.84x10-5 Mtotal = MA + MW + MO Mtotal = CAVA + CWVW + COVO Mtotal = CWKAWVA + CWVW + CWKOWVO Mtotal = CW(KAWVA + VW + KOWVO) Part II: Assign arbitrary value to Mtotal, eg. Mtotal = 100 g = 100g . CW (g/m3) -5 7 3 5 3 3 3 (7.84x10 )(10 m ) + 10 m + (6.31x10 )(1 m ) = 9.34x10-4 g/m3 = KAWCW CA (g/m3) = (7.84x10-5)(9.34x10-4 g/m3) = 7.32x10-8 g/m3 = KOWCW CO (g/m3) = (6.31x103)(9.34x10-4 g/m3) = 5.89 g/m3 = VWCW MWater (g) = (105 m3)(9.34x10-4 g/m3) = 93.4 g = VACA MAir (g) = (107 m3)(7.32x10-8 g/m3) = 0.7 g = VOCO MOctanol (g) = (1 m3)(5.89 g/m3) = 5.9 g Therefore, 93.4% of lindane is partitioning into water, 0.7% into air, and 5.9% into octanol at 15oC.
© Copyright 2026 Paperzz