JMusculoskeletNeuronalInteract2014;14(2):155-161 Original Article Hylonome Validity of an accelerometer as a vertical ground reaction force measuring device in healthy children and adolescents and in children and adolescents with osteogenesis imperfecta type I A. Pouliot-Laforte1,2,3*, L-N. Veilleux1,2*, F. Rauch1, M. Lemay2,3 1 ShrinersHospitalforChildren-CanadaandDepartementofPediatrics,McGillUniversity,Montréal,Québec,Canada; MarieEnfantRehabilitationCenter,Sainte-JustineUniversityHospitalResearchCenter,Montréal,Québec,Canada; 3DepartmentofKinanthropology,UniversitéduQuébecàMontréal,Montréal,Québec,Canada 2 Abstract Introduction: Verticalgroundreactionforces(vGRFs)arecloselyrelatedtobonestrengthanddevelopment.Itistherefore relevanttoassesstheseforcesinbonedisordersaccompaniedwithmuscleweaknesssuchasinosteogenesisimperfectatypeI (OItypeI).ThepurposeofthepresentstudywastoassessthevalidityofvGRFsderivedfromanaccelerometer.Methods: FourteenchildrenandadolescentswithadiagnosisofOItypeI(agerange:7to21;meanage[SD]:14.1[4.8]years;5males) and fourteenhealthycontrols(agerange:6to21;meanage[SD]:12.5[4.2]years;5males)performedthreerepetitionsoffive differentjumpandrisetestsonagroundreactionforceplate.Jumpsandrisesoutcomesweremeasuredsimultaneouslywiththe groundreactionforceplateandanaccelerometer.Results: Pearsoncorrelationcoefficientswereover0.96(p<0.001)forthefive tests.Thelimitsofagreementrepresentedbetween17and31%oftheaveragepeakforcemeasuredbybothdevices.Theaccelerometerisapromisingtooltoassessgroundreactionforcesineverydaylifesettingsandhasbeenshowntobesufficiently sensitivetodetectmuscularweaknessinchildrenandadolescentwithOItypeI. Keywords: Accelerometer,VerticalGroundReactionForces,Agreement,OsteogenesisImperfecta,HealthyChildrenandAdolescents Introduction Accelerometershavebecomeincreasinglypopulartoassess physicalactivityinfree-livingconditions.Theyareoftenused toestimatetheenergyexpenditureandhasbeenextensively validatedinthisrespect1-4.However,theaccelerometerremains little investigated with regard to measuring vertical groundreactionforces(vGRFs).Measuringthisparameteris importantinbonedisordersasitrelatestothemechanicalload- *Authorscontributedequallytotheproductionofthemanuscript. Alloftheauthorshavenoconflictofinterest. Corresponding author: Louis-Nicolas Veilleux, Shriners Hospital for Children, 1529 Cedar Avenue, Montréal, Québec, Canada H3G 1A6 E-mail: [email protected] Edited by: J. Rittweger Accepted 14 April 2014 ingoftheskeletonwhichstronglyinfluencesbonedevelopmentandregulation5. Osteogenesisimperfecta(OI)isaheritabledisordercharacterizedbylowbonemassandincreasedbonefragilitythat isusuallycausedbymutationsinoneofthetwogenesthatencodecollagentypeI,COL1A1 andCOL1A26.OItypeIisthe mildestandmostcommonformofthedisorder7.Childrenand adolescentswithOItypeItypicallyhavefewfunctionallimitationsbutsometimeshavemuscularweaknessofunclearetiology8-10. In that context, using a simple device like an accelerometerwouldbehighlyvaluablefortheassessmentof vGRFsandthereofthemechanicalloadingofthebones.This isespeciallytrueforapopulationwithabonedisorderpresentingmuscleweaknesssuchasinOItypeI. vGRFscanbeeasilyestimatedfromrawaccelerationprofilesthroughthesecondNewtonianlawofmotion(Force= massXacceleration).Therefore,inadditiontoquantifyingenergyexpenditure,accelerometerscouldbeusedasaground reactionforcemeasuringdeviceinfreelivingcondition.Re155 A.Pouliot-Laforteetal.:Accelerometer-derivedgroundreactionforce lationshipsbetweencounts(acommonaccelerometeroutcome variable) and vGRFs measured by a ground reaction force platehavebeeninvestigated11-13 butthedefinitionof‘counts’ variesbetweenaccelerometerbrandandtherelationshipsare task-specific12. Afewstudieshaveassessedthedirectrelationshipbetween vGRFsmeasuredbyaforceplateandanaccelerometer14-16. Onlyoneofthesestudieswasdoneinapediatricpopulation14. AccelerationsandvGRFsweremeasuredinthirty-five12to 14yearsoldadolescentsduringwalkingandrunning.TheauthorsshowedthatvGRFscorrelatewell(r2=0.97;p<0.001) with actual vGRFs measured with a ground reaction force plate.Theresultsofthisstudysuggestthatthisapproachis validfortheinvestigationofsustainedandrepetitiveactivities suchaswalkingandrunning.However,althoughwalkingand runningtypifyafairproportionofchildren’severydaylife,anotherimportantproportionoftheseactivitiesconsistsinthe productionofshortburstsofphysicalactivitysuchasthose observedduringverticaljumpingorchair-rising17.Thesehigh intensityactionsareknowntogeneratehighpeakforcesata highratei.e.,generallylastinglessthan1s.AsnotedbyNeugebauerandcolleagues14,oneimportantlimitationoftheirstudy isthatpeakresultantaccelerationwasaveragedoverarelativelylongperiodoftime(15sepochlength).Thisaveraging methodisunlikelytoefficientlycapturethetransientaspect ofjumpingandrisingmaneuvers. Therefore, in the present study we suggest a simple approachinwhichinstantaccelerationdataareconvertedinto vGRFsthroughthesecondNewtonianlawofmotion16.This approachhasshownitspotentialinhealthyadultandelderly populations,althoughithasnotyetbeeninvestigatedintypicallydevelopingchildrenandinchildrenwithmusculoskeletal disorders.Healthychildrenandadolescentsaswellaschildren andadolescentswithOItypeIwereaskedtoperformfivedifferentjumpandrisemanoeuvresonaportableforceplatform whilewearinganaccelerometerontherighthip.Theselected multipletwo-leggedhopping,themultipleone-leggedhopping,thesingletwo-leggedjump,theheel-riseandthechairrise tests have been validated in healthy children and adolescents18 andinchildrenandadolescentwithOItypeI10. Thespecificgoalofthisstudywastoassessthevalidityof vGRFsmeasurementsderivedfromrawaccelerometerdatain avarietyofactionsthatcloselyrepresentmovementsoccurring inchildren’severydaylife17 andrequiringproductionofshort buthighburstsofforce.Theselectedtestshavebeenshown tocoveralargerangeofvGRFs19. Participants and methods Study population FourteenchildrenandadolescentswithadiagnosisofOI typeI(agerange:7to21;meanage[SD]:14.1[4.8]years;5 males)tookpartinthisstudy.Patientswererecruitedatthe ShrinersHospitalforChildreninMontreal.Patientswereexcludediftheyhadanyfractureorsurgeryinthelowerlimbin thepasttwelvemonths.Fourteenhealthychildrenandadoles156 cents(agerange:6to21;meanage[SD]:12.5[4.2]years;5 males)alsotookpartinthisstudy.Healthyparticipantswere recruitedamongunaffectedsiblingsofpatients(i.e.,notpresentingclinicalsignsofOI),andchildrenofhospitalemployees. This study was approved by the Institutional Review BoardoftheFacultyofMedicineofMcGillUniversity.Informedconsentwasprovidedbyparticipantsor,inminors,by theirparents.Assentwasprovidedbyparticipantsaged7to 17years. Measurement equipment Accelerometer.TheGT3X+accelerometer(ActigraphTM, LLC,Pensacola,FL,USA)wasusedtomeasureacceleration inthreedimensions(vertical,antero-posteriorandmedio-lateral).TheGT3X+weighs19ganditsdimensionsare4.6cm (height)X3.3cm(width)X1.5cm(thick).Theacceleration datawassampledbya12bitanalogtodigitalconverteratrates rangingfrom30Hzto100Hzandstoredinaraw,non-filtered formatintheunitsofgravity(g’s).Thelargestaccelerationdetectable by the device is 6 g. In this study, the data were recordedatafrequencyof60Hzandweredownloadedinraw formattoalaptopwiththeActilife6.0softwarethroughaUSB cable. ForcePlate.TheLeonardoMechanograph® GroundReactionForcePlate(LeonardoMechanographyGRFP,Novotec MedicalInc.,Pforzheim,Germany)wasusedtomeasureverticalgroundreactionforces18,19.Thesignalfromtheforcesensorswassampledatafrequencyof800Hzandwasanalyzed usingtheLeonardoMechanographyGRFPResearchEdition® software(LeonardoMechanographyGRFPResearchEdition Software,version4.2-b05.53-RES;NovotecMedical). Height was measured using a Harpenden stadiometer (Holtain,Crymych,UK).Bodymasswasdeterminedusingthe portableforceplatformLeonardoMechanographyGRFP. Test procedure Theexperimentercarefullypositionedtheaccelerometeron thepatient’srightwaistslightlybehindtheanterioriliaccrest4. Thedevicewasheldinplacedirectlyontheparticipant’sskin withanelasticband. Priortoeachtest,theexperimenterprovidedadescription oftheprocedureandaphysicaldemonstrationofthetaskto theparticipant.Theforceplatformwasadjustedtoindicatea massofzerokgbeforeaparticipantsteppedontoit.Theparticipantstoodonthedeviceinanuprightpositionwiththeir armsrelaxedontheirsides,onefootoneachsideoftheplatformatshoulderwidth.Bodymasswasrecordedoncetheparticipant stood still for at least 2 seconds. Following a single-tonepitch,theparticipantperformedthetestmanoeuvre.Aftereachtrial,theparticipantremainedstillforatleast 2seconds.Adouble-tonepitchindicatedtheendofthetest. Participantswereaskedtoperformfivedifferenttestsinthe followingorder:multipletwo-leggedhopping,multipleoneleggedhopping,singletwo-leggedjump,heel-risetest,chairrisetest,asdescribedindetailelsewhere18.Threevalidtrials wereperformedforeachtest.Atrialwasdefinedasasingle A.Pouliot-Laforteetal.:Accelerometer-derivedgroundreactionforce Gender(M/F) Age(years) Height(cm) BodyMass(kg) Control OI type I P 5/9 12.5(4.2) 152.4(21.6) 48.7(17.8) 5/9 14.1(4.8) 150.1(17.3) 47.9(20.9) 0.37 0.76 0.92 Results are shown as mean (SD). Table 1. Anthropometricdata. Control OI ∆% Multiple Two-Legged Hoppinga GT3X LeonardoGRFP 4.73(0.76) 4.63(0.79) 3.83(0.56) 3.88(0.49) -24 -20 Multiple One-Legged Hopping-Right Legb GT3X LeonardoGRFP 2.95(0.39) 3.07(0.43) 2.26(0.27) 2.50(0.26) -30 -23 Multiple One-Legged Hopping-Left Legb GT3X LeonardoGRFP 3.22(0.52) 3.02(0.48) 2.56(0.23) 2.44(0.23) -26 -24 Single Two-Legged Jump GT3X LeonardoGRFP 2.43(0.48) 2.20(0.23) 2.29(0.30) 2.13(0.21) -6 -3 Heel-Rise Test GT3X LeonardoGRFP 1.43(0.19) 1.50(0.16) 1.39(0.10) 1.45(0.10) -3 -3 Chair-Rise Testc GT3X LeonardoGRFP 1.49(0.19) 1.57(0.14) 1.39(0.12) 1.43(0.17) -7 -10 Results are shown as mean (SD). GT3X: Accelerometer data; Leonardo GRFP: force plate data; Significant differences between groups: p=0.003; bp<0.001; cp=0.04. a Table 2. Peakforcemeasurementsrelativetobodyweightinpatientsandcontrolparticipantsasafunctionofthetestsandthemeasuringdevice. jump(forthesingletwo-leggedjump)orasaseriesof5movements(heel-risetestandchair-risetest)or10consecutivevertical up-and-down movements (multiple two-legged and multipleone-leggedhopping).Thecorrectexecutionofeach trialwasvisuallyassessedbyanexperiencedexperimenter.At theendofthefirsttestsession,theaccelerometerwasgiven backtotheexperimenterandthedataweredownloadedtoa laptop. Data analysis ToassessvalidityandreproducibilityoftheGT3X+forthe measurementofverticalgroundreactionforces,rawverticalaccelerationsweretransformedintoforcewiththefollowingformula: (1)vGRFs(kN)=|((a (g) *9.807(m/s2))*BM (kg))/1000|. wherea istheinstantaccelerationandBM isthebodymassof theparticipant. TodeterminevalidityoftheGT3X+asaforce-measuring device,thehighestforcevalueofeachofthethreetrialsfor eachofthefivetestswereusedforfurtherstatisticalanalyses. Statistical analyses To assess validity, Pearson correlation between data recordedbytheGT3Xaccelerometerandthegroundreaction forceplatewasestablishedforcomparisontosimilarstudies12,13.BlandandAltmanplotsandlimitsofagreementwere calculatedforeachgroupandforeachofthefiveteststodeterminethelevelofagreementbetweentheaccelerometerand thegroundreactionforceplatemeasurements20.BlandandAltmananalyseswereperformedoneachgroupindependently.It maybeassumedthatOIpatientsdonotengageinthesame kindofphysicalactivitiesasdotheirhealthypeersduetofear offractureandhigherfracturerisks.Therefore,OIchildren maynothavethesamelevelofexpertiseashealthychildren duetotheirlackofpractice.Asaresult,jumpingmovement 157 A.Pouliot-Laforteetal.:Accelerometer-derivedgroundreactionforce Figure 1. BlandandAltmanplotsshowingthedifferencesbetweenpeakgroundreactionforces(Fmax;kN)asmeasuredbytheGT3XAccelerometer andtheLeonardoGroundReactionForcePlateagainsttheaveragevalues(dotedline),with95%limitsofagreement(greyshadow)foreachof thefiveclinicaltests.BlackcirclesrepresentdataofparticipantswithOItypeIandwhitefilledcirclesrepresentdataofcontrolparticipants. patternsmaydifferbetweenOIpatientsandcontrols.This couldleadtoincreasedinstabilityatthetrunkwhichinturn mayinfluencerecordingsduetoincreasedmedio-lateraland antero-posteriorgroundreactionforceproduction. Peakforceofthreeconsecutivetrialswaskeptforthisanalysis.Therefore,theBlandandAltmanmethodforrepeatedmeasurementswasused21.Heteroscedasticitywaspresentinonetest (S2LJ),thatis,theabsolutedifferenceswerecorrelatedwiththe magnitudeofthemean(R<0.05).Underthiscircumstance,itis suggestedthatdatashouldbelogtransformedtoremovethisrelationship.Therefore,dataofbothsystemswere(natural)log transformedandthestandardapproachwasthenappliedon thesedata.However,thisproceduredidnotallowremovingthe relationshipandthereforethenormalapproachwasused.An ANOVAcontrastingtwogroups(Controlvs.OItypeI)andtwo devices(accelerometervs.forceplate)withrepeatedmeasures onthelastfactorwascomputedtodetectanysystematicdifferencebetweengroupsanddevicesonabsolutepeakforceand peakforcerelativetobodyweight18.Allstatisticalanalyseswere 158 performedusingPASW18® (SPSSInc.,Chicago,IL,USA). Thep valuesaresetat0.05. Results PatientswithOItypeIdidnotdifferfromhealthyparticipantswithregardtoage,heightandbodymass(Table1).One patientwasunabletogenerateenoughforcetoperformboth multipleone-leggedhoppingtests(i.e.ontherightandleft foot)whereasanotherpatientcouldnotperformthemultiple one-leggedhoppingontheleftfootforthesamereason.The ANOVAwithpeakforcerelativetobodyweightsetasthedependentvariable(Table2)revealedthatpatientswithOIproducedsignificantlylowerforcesthanhealthyparticipantsfor themultipleone-legged(p<0.001)andtwo-leggedhopping (p=0.003)testsaswellasforthechair-risingtest(p=0.04),regardlessofthedeviceusedforforcerecordings.Nodifferences werefoundforthesingletwo-leggedjumpandfortheheelrisetestonbothdevices. A.Pouliot-Laforteetal.:Accelerometer-derivedgroundreactionforce GT3X Leonardo GRFP ∆% Multiple Two-Legged Hopping Healthy OItypeI 2.28(0.93) 1.72(0.73) 2.25(0.97) 1.75(0.75) 1 -1 Multiple One-Legged Hopping-Right Lega Healthy OItypeI 1.44(0.61) 1.02(0.48) 1.49(0.62) 1.13(0.48) -3 -9 Multiple One-Legged Hopping-Left Legb Healthy OItypeI 1.58(0.69) 1.22(0.50) 1.48(0.66) 1.16(0.50) 7 5 Single Two-Legged Jumpb Healthy OItypeI 1.20(0.57) 1.09(0.53) 1.06(0.42) 1.01(0.48) 14 8 Heel-Rise Testa Healthy OItypeI 0.70(0.29) 0.65(0.30) 0.72(0.28) 0.68(0.31) -3 -4 Chair-Rise Testd Healthy OItypeI 0.72(0.27) 0.65(0.30) 0.76(0.30) 0.67(0.31) -5 -2 Results are shown as mean (SD). GT3X: Accelerometer data; Leonardo GRFP: force plate data; Significant differences between measuring devices ap=0.003, bp=0.001, cp<0.001, dp=0.04. Table 3. Absolutepeakforcemeasurements(kN)inpatientsandcontrolparticipantsasafunctionofthetestsandthemeasuringdevice. TheresultsoftheBlandandAltmananalyses,morespecificallythelimitsofagreementpresentedinpercentoftheaverage forcemeasurements,weresimilarbetweengroupsandwereas follows:Multipletwo-leggedhopping:26%vs.33%;multiple one-leggedhoppingoftherightleg:25vs.26%;multipleoneleggedhopping-leftleg:22vs.23%;singletwo-leggedjump:36 vs23%;heel-risetest:16vs15%andchair-risetest28vs.20%, respectivelyforthehealthyparticipantsandOIpatients.Therefore,wedecidedtopoolalldataforsimplicitysake.TheBland andAltmanplots(Figure1)illustratetheagreementbetween forcemeasurementsderivedfromtheaccelerometerandthose collectedbythegroundreactionforceplate.Thelimitsofagreementrepresented24%oftheaveragepeakforcemeasuredby bothdevicesforthemultipletwo-leggedhopping,themultiple one-leggedhoppingontherightlegandthechairrisetestand 23%31%,17%forthemultipleone-leggedhoppingontheleft leg,thesingletwo-leggedjumpandtheheel-risetest,respectively.Correlationcoefficientsbetweenpeakgroundreaction forcemeasuredbytheaccelerometerandtheGRFPwereof:0.97 (Multipletwo-leggedhopping),0.96(Multipleone-leggedhopping-Leftleg),0.97(Multipleone-legged-Rightleg),0.96(Single two-legged jump, Heel-rise test), 0.99 (Chair-rise test; all p’s<0.001) TheANOVA(Table3)comparingtheaveragedpeakforceof theaccelerometertothoseofthegroundreactionforceplate showedthattheaccelerometerinbothgroupssignificantlyunderestimatedtheforcesmeasuredbytheforceplateby6%in themultipleone-leggedhoppingontherightfoot(p=0.003), andby4%intheheel-risetest(p<0.001)andthechair-risetest (p=0.04)butsignificantlyoverestimatedtheseby6%inthemul- tipleone-leggedhoppingtestontheleftfoot(p=0.04)andby 11%inthesingletwo-leggedjump(p=0.001).Forthemultiple two-leggedhoppingtherewasnoobservableoverestimationor underestimationoftheforcesbytheaccelerometer(p=1). Discussion ThisstudyonchildrenandadolescentswithOItypeIand onhealthyparticipantsshowsmoderatetogoodagreementbetweenforcesderivedfromanaccelerometerandthosemeasuredbyagroundreactionforceplateduringtheexecutionof fivedifferentmanoeuvres.Importantly,however,theobserved differencesinvGRFsbetweentheOItypeIgroupandthecontrolgroupwereverysimilarwiththetwodevices. Previousstudieshavereportedclosecorrelations,between vGRFsmeasuredbyaforceplatformandaccelerometerderivedvGRFsduringaheel-risingtest(r=0.98)16,verticaljumping(r=0.90)15 andwalkingandrunning(r2=0.97)14.Thehigh correlationsreportedinthecurrentstudyaresimilartothatobservedinthosepreviouslystatedstudiesandconcurtosuggest thatmeasuringvGRFswithanaccelerometerisahighlyvalid approachinchildrenandadolescents.However,correlation analysisisastatisticallyinadequatewaytoestablishagreement betweentwomethods20.Correlationsreflectthespreadofvalueswithinastudypopulationandthereforeprovideinformationaboutaspecificstudypopulationratherthanaboutthe methodsthataretobecompared22.Theyalsoprovideameasureofthestrengthoftherelationshipbetweentwovariables butfailtospecificallymeasureagreementbetweenthesetwo 159 A.Pouliot-Laforteetal.:Accelerometer-derivedgroundreactionforce variables.Forexample,aperfectcorrelationcouldbeobserved ifdatapointsweredistributedalonganystraightlinewhereas perfectagreementwouldbeobservedonlyifdatapointswere distributedalongthelineofequality.TheBlandandAltman approachhasbeendevelopedtoavoidthesepitfalls20.Using thisapproach,wefoundlimitsofagreementthatwerebetween 16%to24%oftheaverageforcemeasurementsin5ofthe6 testsandahigherlimitofagreementforthesingletwo-legged jump(31%).Inouropinion,theseresultssuggestacceptable agreementbetweenthetwomethods.However,itcontrasts withtheveryhighcorrelationsthatweandothershavereportedandhighlightstheusefulnessoftheBlandandAltman approachtocomplementthemoretraditionalcorrelationapproachinvalidationstudies. Despitesomedifferencesinforcereadings,ourdatasuggeststhattheaccelerometerisapotentiallyvaluabletoolto estimategroundreactionforcesineverydaylifesettings.The smallover/underestimationofaveragedvGRFsbytheaccelerometer’sderivedforcessuggeststhatoveralongperiod ofrecordings(i.e.manyrepetitions)forcemeasurementsare quiteaccurate.ThattheaccelerometercouldreflectvGRFs ofeverydaylifemovementsaccuratelyissupportedbythe factthatthetestsusedinthecurrentstudyreflectawide rangeofgroundreactionforces;from1.3to4.7timesbody weight19. Most importantly, our data indicate that the accelerometerandtheforceplatefoundsimilardifferencesbetweentheOItypeIcohortandthecontrolgroup.Itmaybe possibletouseanaccelerometerinstudiesthatcomparemuscleforcebetweentwogroupsofrelativelyfunctionalstudy cohortswiththeteststhatwereevaluatedinthepresentstudy. Therefore,theaccelerometercanbeasuitabletoolforassessinggroundreactionforcesduringtheteststhatwereevaluatedinthepresentstudy. Theagreementbetweentheaccelerometerandtheforce platemeasurementsmaybeinfluencedbymovementartifacts oftheaccelerometer,asitisplaceddirectlyontheskin23.This couldexplaintheaccelerometerforceoverestimationinthe multipleone-leggedhoppingontheleftlegandinthesingle two-leggedjump.Positioningtheaccelerometerontheright hipmayhavealsoincreasedthediscrepancybetweenthetwo methods,especiallyduringasymmetricmovements,suchas one-leggedhopping23.Itmighthavebeenmoreappropriateto placetheaccelerometeratornearthecenterofmass,i.e.atthe lowerback16.Inthecurrentstudy,weoptedfortherighthip placementbecausethissitehasbeenextensivelyvalidatedfor theassessmentofenergyexpenditureinhomebasedsettings. Finally,itwasnotedthattherewasaproportionalbiasinthe singletwo-leggedjump,i.e.thatforceswereunderestimated atlowlevelsofvGRFswhereastheywereoverestimatedat higherlevelsofvGRFs.Thistestrequiresproductionofpronouncedsimultaneoushipandtrunkflexionsandextensions. Becausetheaccelerometerwaswornatthehip,itispossible thatthevelocityatwhichtheextensionsoccurpriortoliftoff hadaninfluenceontheaccelerometersuchasdisplacement artifactsorinclination. 160 Conclusions Thegoalofthepresentstudywastodetermineifonecould userawaccelerationdatatocomputedgroundreactionsforces indifferentmaneuversmimickingafairproportionofchildren’severydaylifeactivities.Highcorrelationswerereported aswellaslimitsofagreementrepresentingonaverage20%of themeasuredforces.Inaddition,theaccelerometerderived dataalloweddetectionofexpectedsignificantdifferencesbetweenbothstudypopulations.Accelerometryseemstobea validtooltoestimatevGRFsineverydaylifesettingsintypicallydevelopingchildrenaswellasinchildrenwihOI. Acknowledgements This study was supported by the Shriners of North America, the Fonds de la Recherche du Québec en Santé (FRQS), the Fondation Go and the MENTOR-RSBO program supported by the Canadian Institute for Health Research (CIHR) and the FRQ-S. Study sponsors had no involvement in the writing of the manuscript; and in the decision to submit the manuscript for publication. References 1. 2. 3. 4. 5. 6. 7. 8. 9. CrouterSE,SchneiderPL,KarabulutM,BassettDR,Jr. Validityof10electronicpedometersformeasuringsteps, distance,andenergycost.MedSciSportsExerc2003; 35:1455-60. EkelundU,SjostromM,YngveA,PoortvlietE,Nilsson A,FrobergK,etal.Physicalactivityassessedbyactivity monitoranddoublylabeledwaterinchildren.MedSci SportsExerc2001;33:275-81. NilssonA,BrageS,RiddochC,AnderssenSA,Sardinha LB,WedderkoppN,etal.Comparisonofequationsfor predictingenergyexpenditurefromaccelerometercounts inchildren.ScandJMedSciSports2008;18:643-50. PuyauMR,AdolphAL,VohraFA,ButteNF.Validation andcalibrationofphysicalactivitymonitorsinchildren. ObesRes2002;10:150-7. RauchF,SchoenauE.Thedevelopingbone:slaveormasterofitscellsandmolecules?PediatrRes2001;50:309-14. ForlinoA,CabralWA,BarnesAM,MariniJC.Newperspectivesonosteogenesisimperfecta.NatRevEndocrinol 2011;7:540-57. BenAmorIM,RoughleyP,GlorieuxFH,RauchF.Skeletal clinical characteristics of osteogenesis imperfecta causedbyhaploinsufficiencymutationsinCOL1A1.J BoneMinerRes2013;28:2001-7. EngelbertRH,BeemerFA,vanderGraafY,HeldersPJ. Osteogenesisimperfectainchildhood:impairmentand disability-afollow-upstudy.ArchPhysMedRehabil 1999;80:896-903. TakkenT,TerlingenHC,HeldersPJ,PruijsH,Vander Ent CK, Engelbert RH. Cardiopulmonary fitness and musclestrengthinpatientswithosteogenesisimperfecta typeI.JPediatr2004;145:813-8. A.Pouliot-Laforteetal.:Accelerometer-derivedgroundreactionforce 10. VeilleuxLN,LemayM,Pouliot-LaforteA,CheungMS, Glorieux FH, Rauch F. Muscle anatomy and dynamic musclefunctioninosteogenesisimperfectatypeI.JClin EndocrinolMetab2014;99:E356-62. 11. GarciaAW,LangenthalCR,Angulo-BarrosoRM,Gross MM.Acomparisonofaccelerometersforpredictingenergyexpenditureandverticalgroundreactionforcein school-agechildren.MeasurePhysEducExercSci2004; 8:119-44. 12. JanzKF,RaoS,BaumannHJ,SchultzJL.Measuringchildren’sverticalgroundreactionforceswithaccelerometry duringwalking,running,andjumping:TheIowabonedevelopmentstudy.PediatrExercSci2003;15:34-43. 13. RowlandsAV,StilesVH.Accelerometercountsandraw accelerationoutputinrelationtomechanicalloading.J Biomech2012;45:448-54. 14. Neugebauer JM, Hawkins DA, Beckett L. Estimating YouthLocomotionGroundReactionForcesUsinganAccelerometer-BasedActivityMonitor.PLoSONE2012; 7:1-7. 15. ElvinNG,ElvinAA,ArnoczkySP.Correlationbetween groundreactionforceandtibialaccelerationinvertical jumping.JAppliedBiomech2007;23:180. 16. SchmidS,HilfikerR,RadlingerL.Reliabilityandvalidityoftrunkaccelerometry-derivedperformancemeasure- 17. 18. 19. 20. 21. 22. 23. mentsinastandardizedheel-risetestinelderlysubjects. JRehabilResDev2011;48:1137-44. VanPraaghE.Anaerobicfitnesstests:whatarewemeasuring?In:TomkinsonGR,OldsTS,editors.PediatricFitness:SecularTrendsandGeographicVariability.Basel: Karger;2007.p.26-45. Veilleux LN, Rauch F. Reproducibility of jumping mechanographyinhealthychildrenandadults.JMusculoskeletNeuronalInteract2010;10:256-66. VeilleuxLN,RauchF,LemayM,BallazL.Agreement betweenverticalgroundreactionforceandgroundreactionforcevectorinfivecommonclinicaltests.JMusculoskeletNeuronalInteract2012;12:219-23. BlandJM,AltmanDG.Statisticalmethodsforassessing agreementbetweentwomethodsofclinicalmeasurement. Lancet1986;1:307-10. BlandJM,AltmanDG.Measuringagreementinmethod comparisonstudies.StatMethodsMedRes1999;8:135-60. deVetHC,TerweeCB,KnolDL,BouterLM.Whento useagreementversusreliabilitymeasures.JClinEpidemiol2006;59:1033-9. HornerFE,SladeJ,BilzonJL.Theeffectofanatomical placementandtrunkadiposityonthereliabilityandvalidityoftriaxialaccelerometeroutputduringtreadmillexercise.JPhysActHealth2013;10:1193-200. 161
© Copyright 2026 Paperzz