Polyhedra and Geodesics Matrices you should know Symmetries of the Cube Let R1,1,1 be that symmetry which rotates the cube 120◦ clockwise around the axis through (1, 1, 1) and (−1, −1, −1). Let R1,y,1 = R−1,y,−1 be that symmetry whose axis of rotation joins the midpoints of (1, 1, 1) and (1, −1, 1), and (−1, 1, −1) and (−1, −1, −1). 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 0 = 0 1 0 = 1 0 1 0 0 1: Clockwise 120◦ rotation about the axis. R1,1,1 0 0 0 1 0 0: Counterclockwise 120◦ rotation about the axis. R21,1,1 1 0 0 0 −1 0 : Clockwise 120◦ rotation about the axis. R1,1,−1 = 1 0 0 −1 0 0 1 0 R21,1,−1 = 0 0 −1: Counterclockwise 120◦ rotation about the axis. −1 0 0 0 0 1 R1,−1,1 = −1 0 0: Clockwise 120◦ rotation about the axis. 0 −1 0 0 −1 0 R21,−1,1 = 0 0 −1: Counterclockwise 120◦ rotation about the axis. 1 0 0 0 0 −1 R−1,1,1 = −1 0 0 : Clockwise 120◦ rotation about the axis. 0 1 0 0 −1 0 0 1: Counterclockwise 120◦ rotation about the axis. R2−1,1,1 = 0 −1 0 0 1 0 0 Rx = 0 0 1: Clockwise 90◦ rotation about the x-axis. 0 −1 0 1 0 0 R2x = 0 −1 0 : 180◦ rotation about the x-axis. 0 0 −1 RotMat.1 11 March 2009 Polyhedra and Geodesics Matrices you should know 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 1 0 0 R3x = 0 0 −1: Counterclockwise 90◦ rotation about the x-axis. 0 1 0 0 0 −1 Ry = 0 1 0 : Clockwise 90◦ rotation about the y-axis. 1 0 0 −1 0 0 R2y = 0 1 0 : 180◦ rotation about the y-axis. 0 0 −1 0 0 1 R3y = 0 1 0: Counterclockwise 90◦ rotation about the y-axis. −1 0 0 0 1 0 Rz = −1 0 0: Clockwise 90◦ rotation about the z-axis. 0 0 1 −1 0 0 R2z = 0 −1 0: 180◦ rotation about the z-axis. 0 0 1 0 −1 0 R3z = 1 0 0: Counterclockwise 90◦ rotation about the z-axis. 0 0 1 −1 0 0 Rx,1,1 = 0 0 1: 180◦ rotation about the axis. 0 1 0 −1 0 0 0 −1: 180◦ rotation about the axis. Rx,1,−1 = 0 0 −1 0 0 0 1 R1,y,1 = 0 −1 0: 180◦ rotation about the axis. 1 0 0 0 0 −1 R1,y,−1 = 0 −1 0 : 180◦ rotation about the axis. −1 0 0 0 1 0 R1,1,z = 1 0 0 : 180◦ rotation about the axis. 0 0 −1 RotMat.2 11 March 2009 Polyhedra and Geodesics Matrices you should know 0 −1 0 0 : 180◦ rotation about the axis. 23. R1,−1,z = −1 0 0 0 −1 1 0 0 24. I = 0 1 0: The identity. 0 0 1 RotMat.3 11 March 2009
© Copyright 2025 Paperzz