Ecotoxicity of silica nanoparticles to the green alga Pseudokirchneriella subcapitata: importance of surface area Karen Van Hoecke Karel A.C. De Schamphelaere Colin Janssen 1 Introduction Search for research papers in Web of Science*: Results: 95 90 85 91 Total “Nanoparticles AND tox*” in “article title” 1 “surface” + ecotoxicology 5 Eco 25 “surface” 80 75 86 Human 70 65 60 55 50 NP ecotoxicology is a small research field of nanotoxicology in general “Surface” is an important issue in nanotoxicology * The search was conducted on 14th February NanoECO Karen Van Hoecke 2 2 Surface area in nanotoxicology L. Yang and D. J. Watts. (2005). Toxicology letters, 158, p. 122-132. D. B. Warheit et al. (2006). Toxicological sciences, 91 (1), p. 227-236 T. Stoeger et al. (2007). Environmental health perspectives, 115 (6), p. A291-A292. D. Fubini (2007). Platform presentation. Beltox Annual Meeting, 28th November 2007, Namur, Belgium. R. Duffin et al. (2007). Inhalation toxicology, 19, p. 849-856. NanoECO Karen Van Hoecke 3 3 Importance of particle diameter Surface = 4 π R2 Volume = 4/3 π R3 Surface to volume ratio ~ 1/R Oberdörster et al. (2005). Environmental Health Perspectives 113: 823. For diameters < 100 nm, a huge amount of surface area is available for potential toxicological interaction Are smaller nanoparticles more toxic than larger nanoparticles? NanoECO Karen Van Hoecke 4 4 Research hypothesis Based on inhalation toxicology studies: Rat Öberdorster et al. (2005). Environmental Health Perspectives 113: 823. When concentration is expressed as mass, smaller nanoparticles are more toxic than larger nanoparticles. However, when concentration is expressed as surface area, the difference in toxicity disappears. NanoECO Karen Van Hoecke 5 5 Testorganism and test design Testorganism Unicellular freshwater green alga Pseudokirchneriella subcapitata Test design Chronic 72 h growth inhibition test (OECD TGD No. 201) Test medium: described in OECD guideline + 750 mg/l MOPS* buffer Toxicity endpoint: % decrease in average specific growth rate, relative to control *3-(N-Morpholino)propanesulfonic acid OECD test guidelines at: http://www.oecd.org/document/40/0,3343,en_2649_34377_37051368_1_1_1_1,00.html NanoECO Karen Van Hoecke 6 6 Materials: LUDOX® silica particles Commercial LUDOX® silica (SiO2) nanoparticles of 2 different sizes: LUDOX® LS LUDOX® TM40 Average diameter: 12 nm Surface area: 236 m2/g Average diameter: 22 nm Surface area: 135 m2/g 800 nm 500 nm http://www.gracedavison.com/products/ludox/techinfo.htm. NanoECO Karen Van Hoecke 7 7 Particle characterization 1. Stability of the particles in test medium Particle size distribution, using dynamic light scattering Are the nominal diameter and surface area of the particles respresentative for their behaviour in test medium? 2. Dissolution of the particles in test medium Colorimetric analysis of reactive silica (SiO32-) in particle suspensions Is toxicity due to (partial) dissolution of the particles or to the particles themselves? NanoECO Karen Van Hoecke 8 8 1. Particle size distribution 12 ® LUDOX LS ® LUDOX TM40 % Intensity 10 8 6 4 2 0 1 10 Diameter (nm) 100 LUDOX® LS LUDOX® TM40 Mean diameter (std. dev.) 12.5 (0.2) 27.0 (0.5) Polydispersity index (std.dev.) 0.26 (0.02) 0.17 (0.02) SiO2 particles are monodisperse Nominal diameter and surface area are representative NanoECO Karen Van Hoecke 9 9 2. Particle dissolution Concentration of reactive silica Reactive (=dissolved) SiO2 (mg/L) Total SiO2 (mg/L) LUDOX LS (12.5 nm) LUDOX TM40 (27 nm) 4.6 < MDL < MDL 10 0.21 < MDL 22 0.22 < MDL 46 0.56 0.35 100 1.01 0.47 220 2.04 1.09 460 4.14 1.58 EC10 of reactive SiO2 to P. subcapitata = 55 mg SiO2/L If toxicity is observed, it is not due to (partial) dissolution of the silica particles NanoECO Karen Van Hoecke 10 10 Concentration-response curves (1) -1 Average specific growth rate µ (d ) Concentration expressed as mass 1.8 LS (12.5 nm) TM40 (27.0 nm) control response 1.6 1.4 1.2 1.0 0.8 0.6 1 NanoECO 10 100 -1 Mass concentration (mg.l SiO2) Karen Van Hoecke 1000 11 11 Concentration-response curves (2) -1 Average specific growth rate µ (d ) Concentration expressed as surface area 1.8 LS (12.5 nm) 1.6 TM40 (27.0 nm) 1.4 control response 1.2 1.0 0.8 0.6 1 NanoECO 10 100 Surface concentration (m².l-1) Karen Van Hoecke 1000 12 12 Statistical analysis Experiment was repeated four times ⇒ 4 EC20 values for both particles 30 EC20 (mg.l-1) 25 < 6 27.9 4.30 5 18.2 EC20 (m².l-1) 35 20 15 4 = 3.77 3 2 10 LS (12.5 nm) 5 TM40 (27.0 nm) 0 1 0 LS (12.5 nm) TM40 (27.0 nm) T-test for dependent samples (α ≤ 0.05) Research hypothesis is valid NanoECO Karen Van Hoecke 13 13 TEM research of algal cells 70 nm slices of algal cells were placed on a copper grid and examined with a Jeol JSM 7500 F Control 400 nm 600 nm NanoECO Karen Van Hoecke 14 14 SiO2 nanoparticle-cell interaction (1) Algal cells exposed to LUDOX® LS (12.5) SiO2 nanoparticles 100 nm NanoECO Karen Van Hoecke 15 15 SiO2 nanoparticle-cell interaction (2) Algal cells exposed to LUDOX® TM40 (27.0) SiO2 nanoparticles 100 nm 400 nm NanoECO Karen Van Hoecke 16 16 Conclusion • LUDOX® silica particles are stable in aqueous suspension and do not dissolve readily • Smaller nanoparticles are more toxic than larger ones when concentration is expressed as mass • Difference in toxicity disappears when concentration is expressed as surface area • Silica nanoparticles are adsorbed to the cell wall of algal cells = NanoECO Karen Van Hoecke 17 17 Acknowledgement Institute for the Promotion of Innovation through Science and Technology (IWT-Vlaanderen) Flanders Science Foundation (FWO-Vlaanderen) Research group Particle & Interface Chemistry (UGent) Laboratoire d’Analyse par Réactions Nucléaires (FUNDP) NanoECO Karen Van Hoecke 18 18
© Copyright 2026 Paperzz