INTERNAL REPORT 51 DIRECT SOLAR RADIATION ON VARIOUS SLOPES FOR 45 AND 47.5 DEGREES NORTH LATITUDE John Buffo and Leo J. Fritschen University of Washington NOTICE: This internal report contains information of a preliminary nature, prepared primarily for internal use in the US/IBP Coniferous Forest Biome program. This Information is not for use prior to publication unless permission is obtained in writing from the author. ABSTRACT Direct-beam solar radiation is presented for hourly, daily, and ye?r1y values for and 47.5 degrees north latitude. the calculations are given. in graphical and tabular form 7 slopes on 16 aspects at 45 Theoretical equations necessary for Solar altitude and azimuth during the day and year are also presented for the same latitudes. INTRODUCTION Solar energy Is by far the most Important climatic factor; It has many unrealized uses. For example, it is an important consideration when selecting building sites and In designing and landscaping buildings. In fact, one's personal home comfort is strongly dependent on solar energy. Solar energy Is a very important parameter in ecological problems dealing with silviculture, entomology, pathology, and fire control. Optimum use of solar energy requires knowledge of the exact location of the sun and the magnitude of insolation at any time of the day and year. Tables and graphs have been prepared that give the sun's location (that is, altitude and azimuth) as a function of latitude, time of day, and year (List 1958, Hutchinson and Cotter 1955). More recently, computer programs have been written that give not only the sun's location but also direct solar radiation on a horizontal surface (Robertson and Russelo 1968, Furnival et al. 1969). Direct solar radiation cn a horizontal surface, however, may not be as useful as radiation on sloping surfaces or vertical walls. Tables for these values have been prepared by Frank and Lee (1966) and Fons et al. (1960). present either daily solar radiation values or coefficientsThe tables that must be multiplied by direct solar radiation on a horizontal surface for specific aspects, slopes, and latitudes. These tables are of limited use because of the range of latitudes and slopes presented and because additional calculations are required. Therefore computer programs were modified and written to calculate direct solar radiation on selected slopes and aspects at 45 and 47.5 degrees north. The results are presented in tabular form and as graphical plots of hourly and daily values THEORY Theoretical derivation of the necessary equations have been given by Byram and Jemlson (1943), Fons et al. (1960), and Frank and Lee (1966), among others. The equations are presented here for completeness. A sample surface is located in the northern hemisphere as shown in Figure The sun is directly overhead at point p on-meridian Zq with a declinationf,,. The sample surface is located at latitude ¢, point r, on meridian mq, which has an hour angle h from the meridian Zq. The surface ofgi has a slope a from the horizontal jo, a deviation of a from the vertical cd, and an aspect 0 from the north no. 17-7-1. The sun's rays are striking the surface at' with an altitude angle Sok, called A. from the horizontal. Thealtitude'A is given by: sin A - sin and the VC, sin d + cos ;azimuth AZ---f rom-the 'north, sin AZ - The'solar Intensity Ion the surface sin where cS cos h where AZ = Z + 90 -cos 6 sin I= iopt/sinA cos degrees, is given by: h/cos A cfgi is: sin 8 e = sin A cos a - cos A sin a sin (Z - S) Here Io Is the radiation at the top of the atmosphere on a surface normal to the sun's rays and p is the atomspheric transmission coefficient. RESULTS AND DISCUSSION for slopes in 15-degree increments wall, 16 aspects in 22.5 degree increments, on 11 selected days of the year, at latitudes 45 and 47.5 degrees north, and atmospheric transmission coefficient of 0.9. The possible combinations are detailed in Table 1. Other options may have been desirable but were Hourly solar radiation was computed ranging from level to a vertical eliminated because of costs. The atmospheric coefficient of 0.9 was selected because it was representative of conditions on the top of a mountain, about 1500 m, on a clear day._ Other values would be useful for some areas where atmospheric pollution is severe. List (1958) presents seasonal totals of direct solar radiation with different atmospheric coefficients at many latitudes. These values may be useful for comparison. The hourly computations for the 11 days are displayed in three ways as: (1) isograms of radiation drawn on graphs of time versus slope for specific days, aspects, and latitudes; (2) daily totals in tabular form for specific days, aspects, and latitudes; and (3) annual totals in tabular form for specific slopes, aspects, and latitudes. The details of display are discussed in the following section. The computed values apply only to surfaces on level terrain where sunrise and sunset are not restricted by topographic features. Many applications of the radiation values are in city or mountainous areas, which have limited day length. Other computer programs can be utilized for these special applications.1 Knowledge of the solar altitude and azimuth as a 1Ross Lake Solar Program, Forest Meteorology, College of Forest Resources, University of Washington. -2- function of the time of day and day of year is required to compute solar List (1958) presents in convenient graphical radiation for these areas. form solar azimuths and elevations for the same days and latitudes as listed in Table 1. For completeness, the graphs are duplicated here (Figures 24 and 25).2 EXPLANATION OF FIGURES AND TABLES Isograms of direct solar radiation (hourly values drawn for every 10 and labeled for every 20 cal cm-2) were drawn on graphs of time (hours) versus slope (degrees) for each of the 16 aspects and each of the 11 days at both latitudes. For convenience, all of the graphs for a specific day and latitude have been reduced and displayed together (Figures 2-23). Some subfigures are labeled double because the east and west aspects are mirror images with respect to solar radiation. The degree of slope is denoted across the bottom of each graph. The reader should note that: (1) the left axis radiation values (0 slope) for each graph for a given day are the same for the same hours of each day, (2) the south-facing walls (right axis of subfigure south) are in sunlight when the north-facing wails (right axis of subfigure north) are not, (3) the east-facing slopes are in sunlight while the comparable west-facing slopes are not, (4) the hours of daylight decrease from summer (Figures 2 and 13) to winter (Figures 12 and 23), and (5) the degree of slope receiving the most radiation increases from summer to winter as the sun's altitude decreases. The second method of presentation of the radiation data is in tabular form. The hourly values were accumulated to form daily totals. These are presented in Tables 2 and 3 as a function of degree of slope and aspect for each of the 11 days and for each latitude. Annual values of solar radiation for each slope and aspect are given in Tables 4 and 5. Small errors exist In these totals because it was assumed that the period from 22 December to 22 June was symmetrical with the period from 22 June to 22 December. This error is small compared with variations in atmospheric transmission coefficients and in determining the slope and aspect of a particular surface. Solar altitude and azimuth for the two latitudes are given In Figures 24 and 25. The user should refer to Table i for the approximate date of the various declinations. For example, the declination of -5 degrees occurs on 8 March and 6 October. Using Figure 24, the solar azimuth at 1000 hours on either of the above dates would be 144 degrees and the elevation would be 34 degrees above the horizon. 2Courtesy of the Smithsonian Institution Press, Washington, D.C. REFERENCES Solar radiation and forest fuel BYRAM, G. M., and G. M. JEMISON. 1943. moisture. J. Agric. Res. 67(4):149-176. 1960. Tables for estimating EONS, W. L., H. D. BRUCE, and A. McMASTERS. direct beaten solar Irradiation on slopes at 30° to 46° latitude. USDA Forest Service, Pacific Southwest Forest and Range Experiment 298 p. Station (Berkeley, California). Potential solar beam Irradiation on FRANK, E. C., and R. LEE. 1966. slopes: Tables for 30° to 50° latitude. USDA Forest Service Research Paper RM-i8. Rocky Mountain Forest and Range Experiment Station 166 p. (Fort Collins, Colorado). Solar Irradiation on south1955. HUTCHINSON, F. W., and M. 0. COTTER. facing inclined surfaces. Heat. Piping Air Cond. 27(8):.118-120. Smithsonian meteorological tables. 1958. The Smithsonian Institution. 527 p. LIST, R. J. ROBERTSON, G. W., and D. A. RUSSELO. 1968. 6th ed., revised. Astrometeorological estimator for estimating time when sun is at any elevation, elapsed time between elevations in the morning and afternoon, and hourly and daily values of solar energy. Q. Can. Dep. Agric., Plant Res. Inst., Ottawa, Ont., Agric. Meteorol. Tech. Bull. 14. 22 p. FURNIVAL, G. M., W. E. REIFSNYDER, E.-WYLER, and T. G. SICCAMA. Symposium, p. 181-187. 1969. Proc. Third Forest Microclimate Kanaskis Forest Experimental Station, Seebee, Solar climate calculator. Alberta, 23-26 September 1969. -4- Table 1. Input data from which hourly values, and daily and yearly totals of direct solar radiation were computed using the atmospheric transmission of 0.9. Approximate date Declination (deg) (min) 22 Dec. -23 27 21 Jan. & 22 Nov. -20 9 Feb. 6 Latitude (deg) 45 47.5 Slope (deg) 0 Aspect N 15 NNE-NNW 3 Nov. -15 30 NE-NW 23 Feb. F, 20 Oct. -10 45 ENE-WNW 6 Oct. -5 60 E-W 21 Mar. & 23 Sep. 0 75 ESE-WSW 3 Apr. & 10 Sep. +5 90 SE-SW 16 Apr. & 28 Aug. +10 SSE-SSW & 12 Aug. +15 S 24 Jul. +20 8 Mar. & 1 May 21 May 22 Jun. & +23 27 LATITUDE 4ti DEGREES NJRTH, DEC. 22 ASPECT SLOPE N (DEGREES) NNE NE ENE E ESE SE SSE NNW NW WNW W WSW SW SSW S 0 166 160 166 166 166 166 166 166 166 15 36 47 77 117 164 210 253 281 291 30 0 0 24 85 162 245 322 377 396 45 0 0 8 67 157 264 369 447 474 60 0 0 4 55 151 269 392 486 519 75 0 0 3 46 135 258 387 493 530 90 0 0 1 35 118 228 358 455 504 LATITUDE 45 DEGREES NJRTH, JAN. 21 ASPECT SLOPE N NNE NE ENE E ESE S (Oc5RELS) NNW NW WNW SE SSE W WSW SW SSP 0 213 213 213 213 213 213 213 213 213 15 09 82 114 158 208 259 304 334 345 30 0 0 47 117 203 292 374 432 453 45 0 0 20 94 194 308 419 501 530 60 0 0 10 76 183 308 435 536 571 75 0 0 6 63 162 290 423 534 573 90 0 0 4 47 139 253 383 495 536 Table 2. slopes, Daily values of direct solar rad'ation computed for selected aspects, and days at 45 degrees north latitude. LATITUDE 45 DEGREES NORTH, FEB. 9 ASPECT SLOPE N NNE NE ENE SE SSE NW WNW E W ESE NNW WSW SW SSW 287 287 2b7 287 287 287 287 287 287 15 130 143 179 227 282 338 384 416 427 30 0 27 96 182 275 371 456 516 538 45 0 0 53 150 265 386 498 581 612 60 0 0 35 127 249 380 506 60? 645 75 0 0 24 107 220 354 483 591 633 90 0 0 19 85 189 306 428 535 579 (UE REtS) S LATITUDE 45 OEGRcES NORTH, FEB. 23 ASPECT SLUP. (DtGREtS) 360 NrNE NNW NE ENE E SSE WNW W ESE WSW SE NW SW SSW 360 360 360 360 360 360 360 360 11 15 197 211 247 297 354 409 455 488 499 30 32 74 152 244 343 437 522 582 604 45 0 11 94 205 328 449 556 637 668 3 64 174 303 434 552 '648 686 1 47 145 267 398 517 615 658 0 35 116 226 340 448 540 584 60 75 0 90 Table 2. (continued) LATITUDE 45 DEGREES NJRTH MAR. 8 ASPECT NNE NE ENE E ESE SE SSE NNW NW WNW W WSW SW SSW 434 434 434 434 434 434 434 434 434 15 274 285 319 368 423 475 522 553 564 30 96 135 212 306 405 497 576 634 655 45 0 40 138 257 381 498 598 673 702 60 0 14 98 216 346 471 579 665 702 75 0 7 71 176 302 424 531 612 653 90 0 3 50 142 250 356 446 520 559 E ESE W WSW SE SW SSE SSW SLOPE (DEGREES) N LATITUDE 45 DEGREES NORTH, MAR. 21 ASPECT SLOPE (DEGREES) N 0 NNE NE ENE NNW NW 512 512 512 512 512 512 *512 512 512 15 360 372 404 449 501 552 593 619 629 30 183 215 293 387 481 569 637 687 704 45 0 92 208 331 452 561 648 707 730 60 0 44 152 282 410 526 616 680 70T 75 0 26 116 236 360 469 553 609 635 90 0 19 88 191 298 390 456 500 520 Table 2. (continued) LATITUDE 45 DEGREES NJRTH APR* 3 ASPECT NNE NE ENE E ESE SE SSE NNW NW WNW W WSW SW SSW 590 590 590 590 590 590 590 590 590 15 451 460 488 530 576 620 055 679 688 30 281 303 372 459 547 626 685 725 740 45 93 157 274 397 509 606 679 725 741 60 5 81 206 338 459 558 631 675 692 75 1 51 157 282 398 490 552 585 595 90 0 34 120 226 325 401 444 458 458 LATITUDE -45 DEGREES NORTH, APR. 16 ASPECT SLOPE N NNE NE ENE E ESE SE SLOPE (DEGREES) N (DEGREES) S NW WNW W WSW SW SSE SSW S NNW 0 659 b59 659 659 659 659 659 659 659 15 536 544 566 601 641 678 708 729 736 30 378 393 449 527 605 671 721 751 764 45 193 229 339 453 556 638 696 729 739 b0 35 124 256 385 496 577 631 657 664 75 14 78 196 319 424 498 538 550 544 90 6 52 147 252 341 399 420 408 391 Table 2. (continued) LATITUDE 45 DESRcES NJRTH, MAY 1 ASPECT SLOPE N NNE NE ENc E ESE SE SSE NNW NW WNW W WSW SW SSW 0 730 730 730 730 730 730 730 730 730 15 630 63b o53 680 711 739 762 776 779 30 488 499 542 607 671 721 757 773 779 313 329 *25 528 617 677 715 727 728 60 116 192 329 452 5+8 607 635 634 627 75 54 126 255 376 457 516 526 508 487 90 35 90 196 299 375 409 396 355 322 LATITUDE 45 DEESRLES NORTH, SLOPE N (DEGREES) MAY 21 ASPECT NNE NE ENE E NW WNW W ESE WSW SE SW SSE SSW S NNW 0 799 799 199 799 199 799 799 799 799 15 725 728 738 75b 777 796 810 817 819 30 601 608 X32 680 726 762 783 788 787 436 445 505 594 063 703 119 715 708 60 241 267 394 504 563 619 622 599 582 75 106 175 306 417 491 516 498 454 426 90 b4 123 232 329 389 399 351 292 247 Table 2. (continued) LATITUDE 45 DEGRcES NJRTH, NNE NE JUN. 22 ASPECT E ENE ESE SE SSA NNW NW WNW W WSW SW SSW 838 838 638 838 838 838 838 833 838 15 781 783 789 799 814 826 834 837 839 30 670 674 388 723 758 783 792 791 785 45 514 520 558 631 686 713 716 701 691 60 323 330 436 53b 600 621 608 572 549 75 151 212 339 439 501 510 476 416 386 90 94 145 256 345 394 388 335 248 205 SLOPE (OEGRtES) N 0 Table 2. (continued) S LATITUDE 47.5 DEGREES NORTH, JEC. 22 ASPECT SLOPE N (J EGREES) .4N Nt LNE L ESE SS SSL iNNW NW WNW W WSW SW SSW S 0 135 136 136 136 136 136 136 136 136 15 13 29 56 92 135 178 217 243 252 30 0 13 66 135 212 283 333 351 4 52 133 231 33) 4C1 426 45 60 0 2 43 126 239 354 442 472 75 3 1 36 117 231 354 452 466 1 28 133 2J7 331 431 467 S 90 0 ,-A T ITUDE 47.5 uEi,kEEz:, NO TH, J4N. 21 4SPcCT SLOPE N ( ) Ev REES) 0 16? 15 47 30 0 45 3 AN NE 14 E -SL SE SSL 1 NW NW WVW W WSW Sw SSW 1o2 182 102 162 132 162 182 1t2 89 131 179 227 270 299 309 33 J8 177 261 339 395 414 13 79 171 279 385 464 492 6 64 164 2z4 405 5G2 536 0 75 3 5 55 147 270 399 5C5 543 90 3 3 42 126 238 366 474 513 Table 3. slopes, Daily values of direct solar radiation computed for selected aspects, and days at 47.5 degrees north latitude. LATITUDE 47.5 DEGREES NORTH, F.B. 9 ASPECT SLOPE (J EGRESS) N 0 NNNE NE ENE E ES E SE SSE N NW NW WNW W WSW SW SSW 25+ 254 254 254 254 254 254 254 254 15 .103 116 150 197 249 303 349 380 391 30 0 13 75 155 244 337 421 479 500 0 41 127 237 354 464 546 576 45 ° S 60 0 0 27 108 224 352 476 576 613 75 0 0 18 92 199 330 459 566 607 90 0 0 14 73 172 288 411 518 561 S LATITUDE LOPE 47.5 DEGREES NORTH, FEB,. 23 ASPECT ,JNE NE ENE E ESE SE SSE 4NW NW WNW W WSW SW SSW 323 328 328 326 328 328 328 32b 328 15 165 181 217 266 323 377 423 455 467 30 12 53 127 216 315 409 493 552 574 45 0 6 76 164 303 423 531 611 642 60 0 2 54 158 284 413 532 628 667 75 0 u 41 133 252 333 504 663 645 90 0 0 31 108 _216 330 442 536 580 S N t 9 E GRESS) Table 3. (continued) LATITUDE -+7.S 3EGREES NO TNT MAR. 8 ASPECT EKE tN NL N '1 NE SLOPE t!)=GREES) St SSE iNW NW WNW W WSW SW SSW S 0 403 408 408 408 408 408 406 408 4C8 15 245 257 293 34+2 398 +51 498 530 542 30 63 Iii 190 262 383 477 556 617 639 45 0 30 124 240 363 432 585 662 692 60 0 11 88 234 334 4+81 572 b61 699 75 5 65 169 293 419 530 616 657 90 2 47 136 246 355 451 530 571 E _SE SE SSE S SW SSW LATITUDE 47.5 DEGREES NORTH, MAR. 21 ASPECT SLOPE (DEGREES) NNE N NE LN_ NNW NW WNW W WOW 483 489 489 489 469 439 489 489 489 15 333 345 378 425 479 531 574 601 611 30 154 186 269 366 463 552 623 674 692 45 0 77 191 314 438 550 640 702 726 60 0 37 143 27u 402 520 615 683 710 75 0 23 111 229 355 468 558 618 646 90 0 18 84 187 297 393 464 515 538 Table 3. (continued) 3 LATITUDE 47#5 DEGREES NORTH, APR. ASPECT NNE NE ENE E ESE SE SSE NNW NW WNW W WSW SW SSW 570 570 570 570 570 570 570 570 570 15 .426 435 465 508 557 603 640 E65 675 30 253 276 349 441 531 614 676 718 733 45 63 137 256 382 497 599 676 725 742 60 5 73 195 328 452 557 634 683 701 75 0 48 150 276 395 493 561 599 611 33 116 223 326 407 456 477 480 SLOPE (DEGREES) N 0 90 S LATITUDE 47.5 DcGR-EES NORTH, A?R. 16 ASPECT SLOPE N (DEGREES) ANE NE ENE E ESE SE SSE ANW NW WNW W WSW SW SSW 0 642 642 642 542 642 b42 642 642 642 15 515 523 547 584 626 665 697 719 726 30 352 368 430 512 594 664 717 748 762 45 165 207 324 443 550 637 699 734 745 60 31 117 248 380 495 582 640 670 678 75 15 76 193 318 427 506 552 568 564 52 148 254 347 410 436 429 415 90 Table 3. (continued) LATITUDE 47.- DEuREES NURTN' MAYPICT AS t E ESE Sc. SSt WNW W WSW SW SSW 718 713 718 718 718 71b 718 638 667 700 732 756 771 775 465 476524 595 664 718 758 776 782 257 366 409 519 614 630 721 737 738 1G1 181 326 +*6 550 615 646 649 645 75 53 125 253 376 472 527 543 529 508 90 35 90 197 302 382 421 417 376 348 tNc cSL SE SSE S SW SSw .JNc ;NW Nt NW 713 716 15 613 619 30 45 N SLOPE (0 EG RECS) EN S LP TITUUE 47.5 UEORLES NO (Tri, MAY 21 ASPECT 4NE N SLOPE (DEGREES) NE ANW NW WNW W WSW 792 792 792 792 792 792 792 792 792 0 15 710 715 726 746 773 792 808 616 820 30 580 588 616 669 721 762 786 795 793 45 411 422 489 534 660 706 728 728 723 60 213 25U 3b4 496 564 627 635 61b 663 75 161 167 299 415 494 526 516 477 451 90 64 121 230 329 393 410 379 316 275 Table . (continued) LATITUDE 47.5 O GRcES NORTH, SLOPE (DEGREES) JUN. 22 ASPECT N N E NE ENE E ESE SE SSE NNW NW WNW W WSW SW SSW 83+ 634 834 .834 834 834 834 834 834 15 772 775 782 794 811 825 834 839 842 30 658 662 678 719 759 787 799 799 794 45 495 i05 548 629 690 723 728 71b 707 60 305 316 432 538 608 634 624 592 572 75 155 213 341 445 512 526 495 440 411 90 101 153 261 35 406 404 353 272 230 Table 3. N (continued) YITUOE 45 DEGREES, NORTH ASPECTS 0 15 30 SLOPE (DEGREE) 60 45 75 90 N 186389 141420 95228 57442 27803 12543 7704 NNE / NNW 186389 144750 100979 65162 38079 24620 17083 NE / NW 186389 153801 119028 89733 68208 52439 39604 ENE / WNW 186389 166819 144899 124548 105654 87536 69339 E/W 186389 181775 172449 159942 143821 123571 100778 ESE / WSW 186389 196216 198047 191819 177203 155406 126958 SE / SW 186389 208311 218951 217736 203755 179504 146077 S$E / SSW 186389 216248 232510 234433 221001 194328 156193 S 186389 219052 237183 239995 226464 198674 158275 Table 4. Yearly values of direct solar radiation slopes and aspects at 45 degrees north latitude. computed for selected LATITUDE 47.5 DEGREES, NORTH ASPECTS 0 15 30 SLOPE (DEGREE) 45 60 75 90 N 178802 133783 89539 53210 25132 12365, 7999 NNE / N44 178802 137086 95127 60742 35734 23937 37117 NE / NW 178802 146234 112559 85077 65405 51021 39144 ENE / WVW 178802 159411 138487 119590 102259 85565 68384 W 178802 174520 166234 155112 140410 121512 99849 ESE / WSW 178802 189163 192129 187283 174309 153952 126751 SE / SW 178802 201383 213264 213594 201337 178949 146983 SSE / SS4 178802 209398 227001 230574 219008 194394 158018 S 178802 212285 231604 236215 .224745 198871 160509 E /. Table 5. Yearly values of direct solar radiation computed for selected slopes and aspects at 47.5 degrees north latitude. Figure I. Illustration of the angles necessary for the theoretical calculations of solar radiation on a particular surface in the northern hemisphere. 20/4 I8/6 1618 8/16 6/la 4/20 2/22 18/6 16/a 6/16 4/20 2/22 2:/4 I3/6 10/8 30 93 13/14 8/16 0/16 0' 4/20 d OP T,E101?'i08'd::ST 2/20 15 30 45. SLOPE wrnj) 6: 75 :0 0 15 5 > SLLRE tE.,asi 75 90 0 15 30 45 SLOPE xsf Figure 2. Isograms of hourly values of direct solar radiation for various slopes at 45 degrees north latitude on 22 June. For westerly exposures, the time is read from top to bottom (left time axis); for easterly exposures, the time is read from bottom to top (right time axis). 75 90 ELST :0UT .EAST/BEST EAST/:EST S 3 5 T I i 1 1 E ST 0- -4C 60 80 20 -9 F- 0 4/20 .ORT8 2/22 0 CO 80 SLOPE fpasm) 61 75 3C C 15 33 45 E0 SLOPE !man) 75 90 0 35 3C 85 SLOPE (L3S1 Figure 3. Isograms of hourly values of direct solar radiation for various slopes at 45 degrees north latitude on 21 May and 24 July. For westerly exposures, the time is read from top to bottom (left time axis); for easterly exposures, the time is read from bottom to top (right time axis). .'5 90 20 40 60 0 ''-5 03 SLOPE 6: b3 4 'E4 75 30 a 3; S! APE 45 73 ;=3s: 0 15 3_ Y5 SLODE Figure 4. Isograms of hourly values of solar radiation for various slopes at 45 degrees north latitude on l direct May and 12 August. For westerly exposures, the time is read from top to bottom (left time axis); for easterly exposures, the time is read from bottom to top (right time axis). 75 9i 0 E0 80 3 7:0 R TF 15 30. 45 SLOPE Cz=f % 75 30 0 15 O R T F E F S Tf'.1? T!; 45 30 6 SLOPE 'fxesi 10:T UUE 75 0R TH 0 15 43 30 _3 0'E 61 .. rJ Isograms of hourly values of direct solar radiation for various For slopes at 45 degrees north latitude on 16 April and 28 August. westerly exposures, the time is read from top to bottom (left time axis); for easterly exposures, the time is read from bottom to top (right time Figure 5. axis). 75 30 20/4 18/6 16/8 0- 6/18 4/20 SO:TH SOUTVEIST/SCGTH SOUTIYEST 2/22 EAST SOUTIIE:ST/JEST EAST/WEST SOUTH .EST 18/6 16/8 0 60 60 10/14 8/16 6/18 4/20 2/22 0 :S 30 YS SLOPE (:em) E7 75 30 0 15 30 -5 0PE 61 ( Seta 75 30 0 45 15 SLOP E t7--m-0 Figure 6. Isograms of hourly values of direct solar radiation for various slopes at 45 degrees north latitude on 3 April and 10 September. For westerly exposures, the time is read from top to bottom (left time axis); for easterly exposures, the time is read from bottom to top (right time axis). 550 20/4 10/14 60- 6/18 r0- 4/20 S)!"f EAST S0UT-E:ST/S0CTH 50UT HWEST EAST/WEST SOUTHEAST/WEST SOUTHWE:T 18/6 166/3 14/10 12/12 10/14 8/16 6/12 OOA'HEAST/'::NTa,EST 0 10 30 45 E3 SLOPE 1ma[a: OOPTH 15 90 0 15 30 YS SLOPE figs) /2 75 90. 3 15 3 0 . 45 E: SLOPE Figure 7. Isograms of hourly values of direct solar radiation for various slopes at 45 degrees north latitude on 21 March and 23 September. For westerly exposures, the time is read from top to bottom (left time axis); for easterly exposures, the time is read from bottom to top (right time axis). 75 90 SO 5 SLOPE W.-=) 6 75 30 45 60 SLOPE CwEs) 75 i0 15 3C 5 E) SLOPE (y.ffi) Isograms of hourly values of direct solar radiation for various For westerly 45 degrees north latitude on 8 March and 6 October. slopes at exposures, the time is read from top to bottom (left time axis); for axis). easterly exposures, the time is read from bottom to top (right time Figure 8. 75 50 - -0 i li LS SLOP E E3 :row. 75 9G 0 90 SLOPE !fs s; i0 :> su SLOPE 0vu Figure 9. Isograms of hourly values of direct solar radiation for various slopes at 45 degrees north latitude on 23 February and 20 October. For westerly exposures, the time is read from top to bottom (left time axis); for easterly exposures, the time is read from bottom to top (right time axis). 75 SC.` 2CL3 S 0 U 7 tEAS T/SOU T=:EST EAST/i09T- SO.Tt. EST 8/IE E A]T EAST/JEST S]U7VEA:T/.:EST S0 C'. II UEST JORT,i :;GR-.nEAST/:.CRT IORTi,wES: 2/220 15 45 EO SLOPE ' 7 9C C 31 45 SLOPE (gig) '5 15 0 15 45 G+ SLOPE 'acs' Isograms of hourly values of direct solar radiation for various Figure 10. For slopes at 45 degrees north latitude on 9 February and 3 November. westerly exposures, the time is read from top to bottom (left time axis); for easterly exposures, the time is read from bottom to top (right time axis). 75 8C 8 5-. C SLUT FEAST/SOUT-+EST SCUT; 20/4 18/6 1618 10/14 8/16 6/18 4/20 EAST :10RThEAST/U EST :: 70T PUEST 2/22 16/0 3/16 ' 0 4/20 ;0RT SE AST/;TORT I:::EST 2/22 45 L 75 .. i;. ti CO 75 00 PE Figure 11. Isograms of hourly values of direct solar radiation for various slopes at 45 degrees north latitude on 21 January and 22 November. For westerly exposures, the time is read from top to bottom (left time axis); for easterly exposures, the time is read from bottom to top (right time axis). 21/4 18/6 16/8 60 8 0- 87 6/16 6/16 4/2 SOJ: S3uTH SO OTE0T OCTii 0ST!5CJT 2/2 20/4 18/6 16/8 T 14110 E 12/12 33 u0 10/14 1-20 6/16 6/13 4/20 .;ST EAST/.:EST 'll f:EST ORTHEAST/JEST 2/22 20/, 18/£ 16/8 T 14/10 20 N - 20 20 E 12/12 -33 0 10/14 8/16 6/18 4/20 IOPTnE:ST,'.3PT-EST :I C9 TH 2/22 J 15 30 5LCPE ce-a) .v - 75 50 .5 rTTTHE.=ST/ti C^T!i 45 30 6: S.CPE 0 - E55 =T IIL_5 7S 00R7 11 4S SLOPE (x s'. Figure 12. Isograms of hourly values of direct solar radiation for various slopes at 45 degrees north latitude on 22 December. For westerly exposures, the time is read from top to bottom (left time axis); for easterly exposures, the time is read from bottom to top (right time axis). 75 40 0EAST/ EST 4/20 U ORThc AST/::OR Tf-E?T 3 1 41 S_O,E 'x M!' Figure 13. . 7i ®3 o is 45 31 S_OPE 5 E11 ) 7i Sc >O 4> S.OPE '47=' Isograms of hourly values of direct solar radiation for various slopes at 47.5 degrees north latitude on 22 June. For westerly exposures, the time is read from too to bottom (left time axis); for easterly exposures, the time is read from bottom to top (right time axis). :7 L EA 3T 507T.'E'. ST/ti: EAST /t EST _JT°IEST I'-6C 20 -89 974 T4 7 15 it 45 SLIFE (m-av G 91 0 3L . IS 3 4C S: SL1PE iL_5r Figure 14. isograms of hourly values of direct solar radiation for various slopes at 47.5 degrees north latitude on 21 May and 24 July. For westerly exposures, the time is read from top to bottom (left time axis); for easterly exposures, the time is read from bottom to top (right time axis). 75 90 L 37201 'ORTHE+ST'OORTHLEST '22 i5 50 t5 S:3PI (cr,-g3) 61 75 3( 0 30 55 SLOPE ( rs) 60 75 i0 0 a; SLOSE S3s) Isograms of hourly values of direct solar radiation for various slopes at 47.5 degrees north latitude on I May and 12 August. For westerly exposures, the time is read from top to bottom (left time axis); for easterly exposures, the time is read from bottom to top (right time axis). Figure 15. 75 30 S OUT IEA ST/SO10 ::=_ST 18/6 16/8 14/10 12/12 8/16 4/20 2/22 0 EAST SOUTHEASTIVEST SOU'H0EST 15 39 45 SLOPE Figure 16. 50 75 EAST/WEST 90 0 91 SLOAE x .i. 15 37 4S Isograms of hourly values of direct solar radiation for various slopes at 47.5 degrees north latitude on 16 April and 28 August. For westerly exposures, the time is read from top to bottom (left time axis); for easterly exposures, the time is read from bottom to top (right time axis). S: SLOPE 4xAA 75 3; S9'' T F OUTN EST S O U T L E A S T JS O U T HfST A/i9 H, AST/:1'rTH::: ST % 'PTh I G R TH E AST/10RTH :: 0RTHJSST 75 7: PE Figure 17. Isograms of hourly values of direct solar radiation for various slopes at 47.5 degrees north latitude on 3 April and 10 September. For westerly exposures, the time is read from top to bottom (left time axis); for easterly exposures, the time is read from bottom to top (right time axis). 99 SGCHEAET;SCUT-ST 2/22 lsograms of hourly values of direct solar radiation for various Figure 18. For slopes at 47.5 degrees north latitude on 21 March and 23 September. axis); to bottom (left time westerly exposures, the time is read from top for easterly exposures, the time is read from bottom to top (right time axis). i SOV:H 5^_31,'0.ST'-:3Tb.:E cT 4 6 8 0 2 0 50 SL 45 P E ttx: E0 75 SC , 41 S L C^ E C0 75 91 , 15 sum. 39 45- .5 S; 1 P E Isograms of hourly values of direct solar radiation for various Figure 19. 47.5 degrees north latitude on 8 March and 6 October. For slopes at cft time axis); westerly exposures, the time is read from top to bottom ^ (right time from bottom to the time is read for easterly exposures, ( ' axis). 75 49 20/4 18/6 16/a 0 30 20 20 40 4 0 '5 2 8/16 0 6/16 a/20 00534 10R7iEAST/;0311 2/22 0 15 30 45 SLOPE )i .s) 60 75 9C 0 15 ')0?T FOEST :1 0 PT SLOPE lx'mI LOPE 33 45 43 75 90 1 15 33 45 42 Figure 20. Isograms of hourly values of direct solar radiation for various slopes at 47.5 degrees north latitude on 23 February and 20 October. For westerly exposures, the time is read from top to bottom (left time axis); for easterly exposures, the time is read from bottom to top (right time axis). 75 30 0 0 6 SOU T? SC ' ' H 2OUTHEAS T/S0,7H SDLTHUES7 P..E A S1!50516:"EST D 20 I 0 EA5T SDC'!i E AST/'EST S3UT'2_ EST a0R T11 35 30 45 53 SLOPE :sr7 75 E-5' :DOT"EAST/'.:EST EAST/::EST :0 0 '10PTkEA ST047' % ORT H i E S T 30 45 5L0PE 60 75 tl CTT6:'EST 00RTH 9C i5 33 45 SLOPE ( 60 s) Figure 21. Isograms of hourly values of direct solar radiation for various slopes at 47.5 degrees north latitude on 9 February and 3 November. For westerly exposures, the time is read from top to bottom (left time axis); for easterly exposures, the time is read from bottom to top (right time axis). 75 s0 10/4 18/6 16 ?8 r-- 0 20 4 C_ 60 14/10 0 12/12 x-89 10/14 8/16 P 6/18 4/23 SOOT- SOUTH 2/22 10 UT 4EAST ISOJ TG.'.;ST 20/4 16/8 6/18 4/20 2/22 16/6 16/8 0 20 N 1 8/16 0 6/19 4/20 .ORTREAST/10RTR0_ST I ( 10 0 gORTN UO8THEAST/".CRT! 00RTNNES? OORT- 2/22 15 02 i5 SLOPE (z C: xs) 75 15 3) SLOPE 45 5O -- m) 75 s0 0 :5 TO 45 E) _; UPE Figure 22. Isograms of hourly values of direct solar raidation for various slopes at 47.5 degrees north latitude on 21 January and 22 November. For westerly exposures, the time is read from top to bottom (left time axis); for easterly exposures, the time is read from bottom to top (right time axis). 7, 93 2014 1816 16/8 4/10 Y go- 2/12 60 '-76 8/16 6/18 4/20 SOOT° 2/22 SOUT- i0U'H!EAST/S uT! SOOT-':!E S' SO2THEAST/SOOT`.:EST 0 8/6 6/8 /10 20 2/12 28 0/14 8/16 0 6/18 4/20 EAST/AEST EAST 2/22 C1'!:EAST/A7ST 0/1 8/6 6/8 4/10 20 2/12 20 28 0/14 8/16 6/18 4/20 ';OR-HE; ST / 20T BORT0 OORTHEAS7170RTH 10ETHHES- ;T 'IORTH 2/222 0 15 3O 45 6E SLOPE t.'ss) 75 90 8 15 45 L. SLOPE 'zexa) 30 75 50 0 10 30 41 cc I; SL0°E lsograms of hourly values of direct solar radiation for various Figure 23. slopes at 47.5 degrees north latitude on 22 December. For westerly exposures, the time is read from top to bottom (left time axis); for easterly exposures, the time is read from bottom to top (right time axis). SO 45° N S0LA A L T R I TUDE AND AZ I MUTH X 'V\ \ I-T-L / / "-/ r V \ 2y0 k\ A AL A 70 80 280 WEST EAST 100 260 250 \ X\\ \ t> 7 Cl/X / `'Q1 110 . 120 TRACK 190 SOUTH 170 1 2 3 4 north latitude. May May 21, July 24 1, Aug. 12 Apr. 16, Aug. 28 Apr. 3,, Sept. 10 7 - 5° 10 -10° -15° -20° Mar. 8, Feb.23, Feb. 9, Jan 21, 11 -23°27' Dec. 22 9- Solar altitude and June 22 + 5° + 0° 8 45 degrees +20° +15° +10° 6 5 Figure 24. Decli- Approx. dates nation +2327 Mar. 21, Sept.23 Oct. 6. Oct.20 Nov. 3 Nov.22 azimuth for selected days of the year at 47° 30'N. S0LAR ALT ITUDE 350 340 /'T- 290 L,-T Y NORTH AND AZ I MUTH 10 7`-...`20 1\1 Y Y\ \ = / /''Z X Y \ H X70 280 WEST nation Approx. dates +23°27' J u ne 22 190 SOUTH +20° +15° +10° 170 + + May May Apr. 21, July 24 1, Aug. 12 16, Aug. 28 10 23 Apr. 3, ,Sept. Mar. 21,Sept. 7 - 5° 8 9 10 -10° -15° -20° 11 -23°27' Dec. 22 Mar. 8, Oct. 6 Feb. 23, Oct. 20 Feb. 9, Nov. 3 Jan 21, Nov. 22 25. Solar altitude and azimuth for selected days of the year at 47.5 degrees north latitude. Figure
© Copyright 2026 Paperzz