UNIVERSITY OF GOTHENBURG
Department of Earth Sciences
Geovetarcentrum/Earth Science Centre
Potential of nitrous oxide
as a reaction gas for
ICP-MS, Agilent 8800 QQQ
Isabell Dahlgren
ISSN 1400-3821
Mailing address
Geovetarcentrum
S 405 30 Göteborg
Address
Geovetarcentrum
Guldhedsgatan 5A
B918
Bachelor of Science thesis
Göteborg 2016
Telephone
031-786 19 56
Telefax
031-786 19 86
Geovetarcentrum
Göteborg University
S-405 30 Göteborg
SWEDEN
Table of content
1.
Introduction ..................................................................................................................................... 1
1.1 Spectral interferences ................................................................................................................... 3
1.1.1 Isobaric interference .............................................................................................................. 3
1.1.2 Polyatomic interference ......................................................................................................... 3
1.2 ICP-tandem mass spectrometer (MS/MS)..................................................................................... 3
1.3 Reaction products ......................................................................................................................... 4
1.4 N2O as a reaction gas ..................................................................................................................... 5
2. Methods .............................................................................................................................................. 5
2.1 Analysis of N2O as reaction gas ..................................................................................................... 6
3. Results of N2O as a reaction gas .......................................................................................................... 7
3.1 Suitable mass shifts for analysis .................................................................................................... 7
3.2 Isobaric interference ..................................................................................................................... 9
3.3 Polyatomic (Molecular) interference ............................................................................................ 9
4. Discussion ............................................................................................................................................ 9
4.1 Suitable mass shifts for analysis .................................................................................................... 9
4.2 Solving isobaric interference ......................................................................................................... 9
4.2.1 Rubidium – Strontium .......................................................................................................... 10
4.2.2 Calcium – Titanium ............................................................................................................... 10
4.2.3 Palladium – Ruthenium ........................................................................................................ 10
4.3 Polyatomic interference .............................................................................................................. 11
5. Conclusions ........................................................................................................................................ 11
6. Acknowledgements ........................................................................................................................... 11
7. References ......................................................................................................................................... 12
8. Appendix............................................................................................................................................ 14
Abstract
One of the leading procedures in trace element analysis has become Laser Ablation-Induced Coupled
Plasma-Mass Spectrometry or LA-ICP-MS. With the ICP-MS Agilent 8800 QQQ a specific atomic mass
can be selected for analysis by only allowing a specific mass to become analysed. This is possible
since the ICP-MS Agilent 8800 QQQ is equipped with two quadrupoles, with a reaction cell in
between. The reaction cell can contain a reaction gas, which react with the ions directed from the
first quadrupole. The formation of reaction products between the gas and ions change the
mass/charge ratio, which allows the second quadrupole to reject elements based on a specific
mass/charge ratio (m/z ratio) that corresponds to the targeted reaction product. Although the new
LA-ICP-MS shows great promise in detecting low concentrations of elements, there are still
shortcomings. One of the most difficult problems is spectral interferences, polyatomic and isobaric.
Isobaric interference is when two isotopes of different elements have the same m/z ratio, i.e. 48Ca+
and 48Ti+. Polyatomic interferences can be produced by a large number of sources, elements from the
sample matrix, reagents used for sample preparations, plasma gases and atmospheric gases. When
these molecules have an m/z ratio that corresponds to the same m/z ratio as an element of interest
the results will become misleading, for example, 16O40Ar+ can be interpreted as 56Fe+. ICP-MS without
reaction cells are based on atomic mass and due to this, these interferences can result in unreliable
counts of the element of interest. The aim of this study was to investigate the possibilities of N2O as
a reaction gas and its potentials to minimize the disturbance of spectral interferences, isobaric and
polyatomic. An important aim was to produce a table that can be used as a guideline during routine
analyses with N2O as reaction gas. The analysis was carried out using New Wave Research 213nm
Nd:YAG Solid state laser at line scan mode with a spot diameter of 50µm and 10µm/sec to analyze 70
elements ranging from 7Li-238U on 4 standards. The most suitable mass-shifts was established for
elements 7Li to 238U when using N2O. Three cases of eliminations of isobaric interference that have
the potentials of finding meaningful geological applications were identified: strontium-rubidium,
titanium-calcium and ruthenium-palladium. A decrease of plasma-based polyatomic interference on
28
Si, 30Si, 31P, 52Cr, 55Mn, 56Fe, 75As and 80Se was identified when using no shift mode. The peak
background ratios was significantly higher for 28Si, 30Si, 31P, 52Cr, 55Mn, 75As and 80Se when a specific
mass shift was applied.
Sammanfattning
Laser Ablation-Induced Coupled Plasma-Mass Spectrometry eller LA-ICP-MS har blivit ett av de
ledande tillvägagångssätten vid analys av spårämnen. Med ICP-MS Agilent 8800 QQQ kan en atom
väljas ut för analys genom att endast en specifik massa kan bli analyserad. Denna möjlighet finns
eftersom ICP-MS Agilent 8800 QQQ är utrustad med två quadropoler på var sin sida av en
reaktionscell. Reaktionscellen kan innehålla en reaktions gas, som reagerar med de joner som är
dirigerade från den första quadrapolen. Bildningen av rektionsprodukter mellan gasen och jonerna
ändrar massa/laddning förhållandena, vilket tillåter den andra quadrapolen att separera ämnena
baserat på ett specifikt massa/laddningsförhållande (m/z- förhållande) som överensstämmer med
den reaktionsprodukten man vill analysera. Även om den nya LA-ICP-MS verkar mycket lovande när
det kommer till att analysera låga koncentrationer av ämnen, finns det fortfarande brister. En av de
svåraste är spektrala interferenser, polyatomiska samt isobariska. Isobarisk interferens är då två
isotoper av olika ämne har samma m/z-förhållande, ex 48Ca+ och 48Ti+. Polyatomik interferens kan
bildas av ett stort antal källor, ämnen från provmatrixet, reagenser som används för preparering av
provet, plasma gaser och atmosfäriska gaser. När dessa molekyler har ett m/z-förhållande som
motsvarar ett ämne av intresses m/z-förhållande kommer resultaten att bli missvisande, till exempel
16 40 +
O Ar kan tolkas som 56Fe+. Eftersom en ICP-MS utan en reaktion cell utgår ifrån atommassa kan
dessa störningar leda till otillförlitliga resultat vid analys av ett ämne av intresse. Syftet med denna
studie var att undersöka möjligheterna av N2O som en reaktion gas och dess potential för att
minimera störningen av spektral interferens, isobariska samt polyatomiska. Dessutom, att producera
en tabell som kan användas som en riktlinje vid rutinanalyser med N2O. Studien genomfördes med
hjälp av New Wave Research 213nm Nd: YAG Solid state laser på rad-scanningsläge med en
punktdiameter av 50 µm och 10 µm/s för att analysera 70 ämnen mellan 7Li-238U, på 4 standarder. De
mest lämpliga massförskjutningarna för ämnena 7Li till 238U vid användning av N2O identifierades. Tre
fall där eliminering av isobarisk interferens kan ha potentiella geologiska applikationer bestämdes:
strontium-rubidium, titan-kalcium och rutenium-palladium. En minskning av plasma-baserade
polyatomiska interferenser på 28Si, 30Si, 31P, 52Cr, 55Mn, 56Fe, 75As och 80Se identifierades vid analys
utan massförskjutning. Vid specifika massförskjutning blev top-bakgrundsförhållandena signifikant
högre för 28Si, 30Si, 31P, 52Cr, 55Mn, 75As och 80Se.
There are difficulties regarding the accuracy of
analysis with ICP-MS, besides the possible oxide
formation. One of the most problematic ones is
spectral interferences. They are caused by
atomic or molecular ions that have the same
corresponding mass/charge ratio as specific
elements of interests. Interferences can
generate highly misleading results, were the
true amounts of the elements of interest might
be significantly lower than the results indicate.
There are two main types of spectral
interference, isobaric and polyatomic. Isobaric
interference is when two isotopes of different
elements have the same m/z ratio, e.g. 48Ca+
1. Introduction
ICP-MS is becoming a standard procedure for
trace element analysis in a variety of products
such as food, pharmaceutical products, body
fluids, soil and rocks (Agilent 8800 ICP-QQQ
Application handbook, 2013). It has the ability
to analyse almost all elements in the periodic
table down to a ppt (parts-per-trillion, 10-12)
range in solution (fig. 1). The measurements of
the remaining elements with the ICP-MS is not
possible, due to difficulties in accuracy or the
fact that they have no natural occurring
isotopes (The 30-Minute Guide to ICP-MS,
Figure 1. Which elements in periodic table that can be analysed with ICP-MS to a ppt (parts-per-trillion, 10-12) range
displayed in colour. The white elements cannot be measured by the ICP-MS, due to difficulties in accuracy or the fact that
they have no natural occurring isotopes (The 30-Minute Guide to ICP-MS, 2011).
and 48Ti+ and polyatomic interference are when
molecules produced from e.g. the plasma have
a m/z ratio that corresponds to the same m/z
ratio as an element of interest, for example
16 40 +
O Ar on 56Fe+. A sufficient knowledge of
known polyatomic interferences can be
especially difficult mainly due to the shear
2011).
One of the benefits when analysing with the
ICP-MS, besides the ability to analyse a large
amount of elements, is the low number of
oxide formation and the high degree of
ionization (Bazilio, & Weinrich, 2012).
1
amount and the number of masses they affect
(May & Wiedmeyer, 1998). Potential isobaric
interference on the other hand can be
identified using a Relative Isotopic Abundance
Table, where all natural occurring isotopes are
listed.
(MS/MS), offers many advantages because of
this theology, e.g. high element sensitivity and
the possibility of isotopic information, there are
some significant shortcomings. Spectral
interferences between elements are still a large
problem, even with the new technology
(Balcaen et al., 2015).
The potentials of lowering the amount of
interferences with a conventional quadrupole
ICP-MS (ICP-QMS) and a reaction gas has not
been entirely effective. Studies have shown
that the reaction gas does not only react with
the ion of interest, but also with the matrix
elements and polyatomic formations. This can
result in unwanted new interferences and due
to this the ICP-QMS can only be used with a
reactive gas when a small amount of elements
in a known matrix is measured (Sugiyama &
Nakano, 2014).
When analysing with an ICP-MS the three most
commonly used reaction gases are O2, H2 and
NH3. The manufacturer generally supplies
information about their corresponding reaction
products as well as the gases. Even though they
work well when analysing, there are still room
for improvements in areas such as detection
limits and elimination or decrease in
interferences (Sugiyama et al., 2014).
When using a nonreactive gas like He only
polyatomic interference can be eliminated, but
with a reactive gas the isobaric interference can
be reduced as well. There are two main ways of
decreasing the spectral interference:
To be able to measure a larger amount of
elements, in smaller concentrations with a
lower interference rate the ICP-MS Agilent
8800 QQQ, the world’s first ICP-MS with a
Triple Quadrupole, was developed (Agilent
8800 ICP-QQQ Application handbook, 2013).
This new technology allowed the Triple
quadrupole ICP-MS to work in mass-shift mode
(MS/MS) to control the reaction chemistry and
eliminate the earlier difficulties with the ICPQMS. The two quadrupoles located on either
side of the reaction cell, containing the
reaction gas, gives the operator a larger
control of the reaction chemistry, with a lower
detection limits and less inference than with
the ICP-QMS as a result (Sugiyama et al., 2014).
This can be achieved because the first
quadrupole has the capacity to reject all nondesirable m/z ratios and thus only allowing one
specific ion to react with the reaction gas inside
the reaction cell (Zack & Hogmalm, 2016). The
second quadrupole can then be set to reject all
m/z ratios except the reaction product of
interest (Tanner & Baranov, 1999). However,
even though the Triple quadrupole ICP-MS, also
called
ICP-tandem
mass
spectrometer
by changing the interfering ion to
another that does not interfere with
the isotopic mass of the analyte ion, so
called on-mass mode (Balcaen et al.,
2015).
by changing the analyte ion in to a
reaction product. This changes the
mass-to-charge mode (m/z ratio) and
the analyte ion can be determined free
from interference, so called mass-shift
mode (Balcaen et al., 2015).
Ever since the beginning of the 1980’s there
have been a significant interest of finding
possible solutions to the problematics
surrounding spectral interference (Balcaen et
al., 2015). The aim of this study is to investigate
the possibilities of N2O as a reaction gas and its
potentials to minimize the disturbance of
spectral interferences. Furthermore, to
produce a table that can be used as a guideline
2
Table 1. Common polyatomic interferences when
31
55
75
analysing P, Mn and As with and ICP-MS (May et
al.,1998).
during routine analyses with the reaction gas
N2O.
1.1 Spectral interferences
31
55
14 16 1 +
N OH
40
15 15 1 +
38
15 16 +
N O
36
14 17 +
38
P Interference
As a result of using the reaction cell method a
decrease in possible interference can be
achieved between isotopes generated during
the analysis (Sugiyama et.al). There are two
types of interferences, isobaric and polyatomic.
N NH
N O
Mn Interference
15 +
Ar N
75
As Interference
36
Ar38Ar1H+
Ar17O+
Ar18O1H+
Ar16O1H+
13 18 +
C O
12 18 1 +
1.1.1 Isobaric interference
C OH
A misrepresentative result can be a
consequence of isobaric interference. It is
when two isotopes from different elements
have the same atomic mass, e.g. 48Ca+ and 48Ti+.
If the interference is not taken in to
consideration, the believed amount of 48Ti+ may
also include considerable quantities of 48Ca+
(Balcaen et al., 2015).
1.2 ICP-tandem mass spectrometer
(MS/MS)
When analysing with an ICP-MS Agilent 8800
QQQ the sample turns from solid into aerosols
by shooting the sample with a pulsating laser,
on a small spot on the surface of the sample.
This creates a pit with varying size (≈10100µm). The pit size depends on the machine
settings and the wavelength of the used laser.
To generate the optimal amounts of aerosols,
the laser parameters can vary significantly
depending on the sample material ("Laser
Mode ICP-MS | Quadrupole ICP-MS Lab",
2016).
1.1.2 Polyatomic interference
Polyatomic interferences can be produced by a
large number of sources. Elements from the
sample matrix, reagents used for sample
preparations, plasma gases and atmospheric
gases are some of the many sources of
polyatomic interference when analysing with
LA-ICP-MS (May et al., 1998). Examples of these
elements, such as 12C, 14N, 16O and 40Ar can
combine with each other and cause polyatomic
interference with potentially important
elements. This can affect the outcome of an
analysis. The most common and difficult
interferences due to this are: 12C+16O on 28Si,
14 +16
N O on 30Si, 12C+40Ar on 52Cr, 16O+40Ar on 56Fe
and 40Ar+40Ar on 80Se. Due to this 28Si, 30Si, 52Cr,
56
Fe and 80Se are difficult to analyse in the ICPMS.
When the sample has been ablated with the
laser, the aerosols are directed to the ICP torch.
The torch in the ICP-MS consists of a copper
wire wrapped around several concentric quartz
tubes. The coil conducts a current induced by a
radio-frequency (RF) generator and a argon gas
flows
continuously
through the quartz torch. A plasma is produced
when the energy generated from the ignited
argon gas triggers the argon atoms to becomes
ionized. When the electrons and cations collide
with other argon molecules, an exothermic
reaction takes place and the temperature rises.
As long as new argon gas is supplied, the
plasma reaches equilibrium and a constant
temperature at around 6000°C during the
entire analysis. When using the LA-ICP-MS the
aerosol produced by the laser travels through
the previously described plasma, releases
There are other problematics regarding
polyatomic interference. As stated by May et
al. (1998) the most difficult elements are 31P,
55
Mn and 75As. These elements have an
abundance of 100% as well as a large amount
of interfering molecules (table 1).
3
electrons and becomes ionized. These ions
then continue out of the torch and in to the
interface and the mass spectrometry part of
the instrument (Bazilio et al., 2012).
except m/z of the product ion of interest, in
this case xAzR+. The result is that the ion of
interest xA+ can be analysed without
interference of xI+, yI+ and 2xI2+ (BoleaFernandez et al., 2014).
One of the abilities of the ICP-MS Agilent 8800
QQQ is the capacity to reject all non-desirable
m/z (mass/charge ratio) in the first quadrupole
(Q1) and only let the ion of interest react with
the gas in the reaction cell (ORS3) (Zack et al.,
2016). The first quadrupole becomes a m/z
filter that only lets ions with the right m/z
through (fig. 2). If this is not desired, the Q1
may also act as an ion guide, allowing all m/z
through. The reaction gas then reacts with all
the ions and produce reaction products with
different atomic masses. The second
quadrupole (Q2) is set to act as a filter and
1.3 Reaction products
The best-suited reaction gas and reaction
product for a specific analysis can be
determined by evaluating the intensity of the
different product ions, or in other words count
per second (Balcaen et al., 2015). A count can
be described as individual ions emerging
through the second quadrupole (The 30-Minute
Guide to ICP-MS, 2011). It is crucial to have
large enough counts or peaks otherwise the
signals might be overshadowed by the
background values. By calculating the peak
Figure 2. Illustration of Q1, the reaction cell and Q2. Describing the principals of the tandem ICP-MS,
functioning in mass shift mode. (Bolea-Fernandez et al., 2014).
reject all masses except of the decided target
reaction product. This allows for one specific
reaction product to move on to the detector
and be analysed (Tanner et al., 1999).
values minus the background and then divide
this by the background, a peak-background
ratio is achieved. This ratio illustrates how
many times larger each elements peak values is
compared to the background.
The reaction illustrated in figure 2 displays the
determination of the ion xA+, without
interferences from other ions (xI+, yI+ and 2xI2+).
“x” and “y” represents the different masses
and “+” the charge. The first quadrapole is set
to filter out all the ions except the ones with
m/z=x, there for the yI+ ion does not continue in
to the reaction cell. In the reaction cell, the
remaining ions form reaction products with the
gas “R”. These products then continue in to the
second quadrupole, were they become filtered
again. The Q2 is set to react all the masses
There are several different orders of reactions
and one of the most basic ones are first order
reactions. This is when the reaction rate only
depends on a single reactant. Two examples of
first/primary reaction products between
cations and N2O are ZrN+ and ScO+. In the case
of ZrN+ nitrogen is the reactant of importance
and for ScO+ it is oxygen. When the reactions
get more complex with larger reaction products
as a result, the reaction can be high-order.
Higher order reactions are dependent of two or
4
more reactants. When ionized Co, Nb and Ti
react with N2O these are some of the higher
order products generated: CoO+∙(N2O)3,
TiO2+∙(N2O)2 and NbNO+∙(N2O)3 (Lavrov et
al.,2004).
The reaction efficiency of elements from S, P, D
(transitional metals) and F (lanthanides and
actinide) blocks in the periodic table and N2O
vary considerably (fig.3). The green cations
react by O-atom transfer, the blue ones by Natom transfer and the yellow ones by N2O
clustering. Cations that did not form reaction
products with N2O are coloured white. The
reaction efficiency (k/kc ratio) is represented as
solid circles (fig.3). Were k is the measured
reaction rate coefficient and kc stands for the
calculated collision rate coefficient.
1.4 N2O as a reaction gas
Nitrous oxide (N2O) is a highly reactive gas with
most of the elements in the periodic system.
Compared to O2, nitrous oxide has the
possibility to generate both oxide and nitride
formations (Lavrov et al., 2004). Even though it
shows promise as a reactive gas for LA-ICP-MS,
Figure 3. The periodic variations of reaction efficiency (k/kc) between N2O and cations from the S, P, D, and F
blocks in the periodic table. Po+ and Tc+ were not included in the study (Lavrov, et al., 2015).
due to its reactive nature, it is relatively
unexplored.
2. Methods
This study was performed at the
Microgeochemistry lab at the Department of
Earth Science at Gothenburg University. The
analyses were executed using the ICP-MS,
Agilent 8800 QQQ, coupled to a laser ablation
system. An evaluation of the N2O as a reaction
gas for LA-ICP-MS was complicated by studying
the reactive nature of N2O with 70 elements as
well as establishing which settings of the LAICP-MS would generate the best results during
analysis. Four standards were analysed to
The possibilities of using N2O as a reaction gas
for most S block elements (alkali metals and
alkali earth metals) and P block elements
(metals, non-metals and metalloids) was
investigated by Lavrov et al. (2004). They
concluded that a large amount of cations (M+),
23 of 46 investigated, reacted with oxygen
(MO+) or nitrogen (MN+). Nineteen of the
remaining 23 cations formed N2O clusters
(M+N2O) and the last four remained unaltered.
5
gather reaction data for 70 elements using 12
different mass-shifts.
2.1 Analysis of N2O as reaction gas
Examples of reactions for secondary and high
order reaction products:
After initial testing with the N2O the most
common reaction products were chosen for
analysis, 6 primary order and 6 higher order
(table 2).
Table 2.The chosen reaction products for N2O, with their
+
atomic or molecule masses. M represents the elements
that has combined with the N2O and created reaction
products. The double dashed line separates the primary
and higher order reaction products.
+
14
16
30
MO2
+
32
+
M ∙(N2O)
44
+
MO3
48
+
MNO ∙(N2O)
74
MO2+∙(N2O)
76
MO4+∙NO+
94
+
MNO ∙(N2O)2
118
MO2+∙(N2O)2
+
MO3 ∙(N2O)2
120
The LA-ICP-MS was tested and calibrated for
low element fractionation (238U/232Th) to
achieve minimal measurement errors as well as
low oxide formation (248ThO/232Th), to
determine that maximum oxidation and
ionization was obtained, prior to analysis. Each
of the four standards was then ablated with the
LA-ICP-MS at line scan mode with a spot
diameter of 50µm and 10µm/sec. New Wave
Research 213nm Nd:YAG Solid state laser was
used during the analysis and 800 ml He/min
was applied in a two-volume ablation cell, to
maximize the counts and minimize the washout
time. 4 ml N2/min of the carrier gas (N2) was
then added downstream towards the ICP.
136
There are three fundamental processes were
reaction products are produced between the
ion (M+) and the reactive gas (G) (Zack et al.,
2016):
M+∙(N2O)n + N2O → M+∙(N2O) n+1
MO+∙(N2O)n + N2O → MO+∙(N2O) n+1
MO2+∙(N2O)n + N2O → MO2+∙(N2O)n+1
When analyzing the 70 elements, ranging from
lithium to uranium, four different standards
was used to achieve the highest possible counts
for each of the elements. MT Apatite (Apatite
from “Mud Tank carbonatite, Australia) was
used for Phosphorus, Po727 (Po725 sulfide
standard doped with PGE’s) for PGE and
Sulphur, GSE-1G for Chlorine and Bromine and
NIST SRM 610 for the remaining elements
(Jochum et al., 2011).
Reaction product Atomic/Molecule Mass
MN
MO+
MNO+
M+ + N2O → MO+ + N2
M+ + N2O → MN+ + NO
M+ + N2O → M+N2O
Charge transfer (M++ G → G+ + M)
Atom transfer/mass shift (M++ G →
MG+)
No reaction (M++ G → M++ G)
The first quadrupole (Q1) was used as ion-guide
and the second quadrupole (Q2) was set to the
decided mass-shifts (no shift to +136), and
analyses were made with every standard for
each of the different mass-shifts. Prior to every
ablation one blank analysis was executed to
detect the background, for the different mass-
During this study, the atomic transfer/mass
shift reaction is the predominant. Table 1 is
constructed according to reaction principles
between ions and N2O gas by Lavrov et al.
(2004). Examples of reactions for primary/first
order reaction products:
6
shifts. For more detailed ICP-MS conditions see
table 3.
were executed using Excel. The smallest
accepted count percentage for all elements
was set to 4%, lower would result in to small
CPS (counts per second) and there for not be
sufficient when analyzing.
Table 3. Settings of ICP-MS during analysis.
3. Results of N2O as a reaction
gas
The results from analysis of N2O has been
divided into four groups depending on the
content. The main results produced in this
study is illustrated in table 4 and described in
3.1. Results regarding isobaric (3.2) and
polyatomic (3.3) interference are presented
individually.
3.1 Suitable mass shifts for analysis
In table 4 the analysed elements ranging from
7
Li to 238U are listed with their respective
atomic and mass number as well as the
calculated count percentage for each of the 12
mass-shifts (from no shift to +136). Cells with
count percentage of at least 4% has been
coloured green, to indicate that the peak values
are high enough to be suitable for analysis with
LA-ICP-MS. The green cells with numbers in
bold represent the conditions with the best
peak-background ratio as well as a count
percentage of at least 4%. The red crosses
illustrate where analysis without gas is
preferable to achieve optimal counts and peakbackground ratios. Titanium and ruthenium
have the most abundant isotope added
additionally and the mass-shifts that cause
interference is presented in italics (table 4)
Calculations of count values with extracted
background,
count
percentage,
peakbackground ratio for each element and tables
7
Table 4. All mass-shifts ranging from no shift to +136 with individual chemical formulas, as well as each of the analyzed
elements with corresponding atomic and mass number. The green cells are the mass-shifts that result in a count
percentage of at least 4% and the bold represent the mass-shift that gives the highest peak-background ratio among the
7
238
green cells for every element ( Li to U). The red crosses indicate were analysis without gas are preferable to achieve
optimal counts and peak-background ratios. Ti and Ru have the most abundant isotope added as well and the mass-shifts
that cause interference is presented in italics.
Element Atomic Nr Mass Nr
0 Li
3
7
Be
4
9
0B
5
11
0 Na
11
23
0 Mg
12
24
Al
13
27
Si
14
28
P
15
31
S
16
32
Cl
17
35
K
19
39
Ca
20
44
Sc
21
45
Ti
22
47
Ti
22
48
V
23
51
Cr
24
52
Mn
25
55
Fe
26
56
0 Co
27
59
0 Ni
28
60
0 Cu
29
63
Zn
30
66
Ga
31
71
Ge
32
72
As
33
75
Br
35
81
Se
34
82
0 Rb
37
85
0 Sr
38
88
0Y
39
89
0 Zr
40
90
0 Nb
41
93
0 Mo
42
95
0 Ru
44
101
0 Ru
44
102
0 Rh
45
103
0 Pd
46
105
Ag
47
107
Cd
48
111
Sn
50
118
Sb
51
121
0 Te
52
125
0 Cs
55
133
0 Ba
56
137
0 La
57
139
0 Ce
58
140
0 Pr
59
141
0 Nd
60
146
0 Sm
62
147
0 Eu
63
153
0 Gd
64
157
0 Tb
65
159
0 Dy
66
163
0 Ho
67
165
0 Er
68
166
0 Tm
69
169
0 Yb
70
172
0 Lu
71
175
0 Hf
72
178
0 Ta
73
181
0W
74
182
0 Re
75
185
0 Os
76
189
0 Ir
77
193
0 Pt
78
195
0 Au
79
197
1 Tl
81
205
0 Pb
82
208
0 Bi
83
209
0 Th
90
232
0U
92
238
no shift
99,9%
53,0%
95,9%
100,0%
78,7%
96,0%
14,8%
14,6%
22,7%
9,1%
100,0%
13,8%
7,9%
13,2%
13,3%
19,1%
90,4%
74,0%
34,7%
78,3%
90,6%
98,6%
91,1%
98,1%
23,3%
15,0%
21,5%
67,4%
100,0%
8,2%
2,7%
4,4%
7,6%
76,1%
85,6%
86,9%
94,6%
98,6%
99,9%
96,4%
67,1%
76,0%
75,6%
100,0%
2,8%
1,4%
1,4%
2,0%
2,4%
4,8%
5,3%
3,9%
4,0%
8,4%
10,2%
9,7%
14,3%
18,9%
5,1%
2,1%
2,9%
8,5%
59,1%
41,4%
30,4%
42,3%
96,3%
100,0%
88,6%
96,3%
0,8%
1,1%
N
O
+14
0,0%
0,3%
0,2%
0,0%
0,0%
0,0%
0,8%
0,7%
31,3%
45,5%
0,0%
0,1%
1,3%
12,5%
3,1%
1,9%
0,5%
0,1%
0,2%
0,2%
0,1%
0,0%
0,0%
0,0%
0,9%
2,1%
2,5%
11,3%
0,0%
0,1%
6,4%
14,5%
7,1%
6,9%
4,0%
2,6%
0,8%
0,1%
0,0%
0,0%
0,1%
0,3%
3,8%
0,0%
0,3%
14,9%
20,1%
13,0%
7,3%
0,7%
0,5%
8,3%
9,0%
2,1%
2,0%
2,2%
0,3%
0,3%
0,9%
7,8%
8,3%
14,0%
15,5%
19,6%
4,1%
1,4%
0,0%
0,0%
0,0%
0,0%
56,5%
34,3%
+16
0,0%
5,9%
2,8%
0,0%
20,9%
1,8%
63,5%
83,5%
16,8%
0,0%
0,0%
85,8%
90,3%
27,6%
53,8%
45,9%
4,6%
25,7%
64,6%
20,8%
8,1%
0,2%
8,7%
1,8%
75,5%
82,3%
75,9%
20,9%
0,0%
91,4%
90,4%
22,6%
18,6%
7,0%
4,2%
5,8%
4,0%
1,1%
0,1%
3,5%
32,8%
23,6%
20,6%
0,0%
96,1%
83,5%
77,9%
84,8%
90,1%
94,4%
94,0%
87,6%
86,6%
89,4%
87,6%
87,6%
85,2%
80,8%
91,5%
22,9%
23,7%
34,6%
10,5%
18,2%
21,9%
11,9%
3,1%
0,0%
11,4%
3,7%
42,7%
64,7%
NO
+30
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
1,5%
1,1%
1,1%
0,0%
0,0%
0,3%
0,2%
0,3%
0,0%
0,2%
0,0%
0,0%
0,2%
0,3%
0,1%
0,0%
0,0%
0,0%
0,1%
0,1%
0,0%
0,1%
0,0%
0,3%
0,1%
0,6%
13,4%
1,3%
0,7%
0,6%
0,3%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
0,6%
0,2%
0,0%
0,1%
0,1%
0,1%
0,2%
0,1%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
1,4%
6,8%
11,3%
3,3%
3,2%
2,0%
0,2%
0,1%
0,0%
0,0%
0,0%
0,0%
0,0%
O₂
N₂O
+44
0,0%
0,0%
0,0%
0,0%
0,2%
0,3%
0,2%
0,0%
0,0%
45,5%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
0,3%
0,1%
0,0%
0,3%
0,9%
1,2%
0,2%
0,0%
0,0%
0,2%
0,2%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
0,1%
0,2%
0,2%
0,3%
0,2%
0,0%
0,0%
0,1%
0,1%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
0,1%
0,2%
0,3%
0,0%
0,0%
0,0%
0,0%
0,0%
+32
0,1%
9,6%
0,8%
0,0%
0,1%
0,5%
14,5%
0,0%
28,1%
0,0%
0,0%
0,0%
0,2%
34,5%
22,6%
24,6%
1,8%
0,0%
0,1%
0,0%
0,0%
0,0%
0,0%
0,0%
0,1%
0,2%
0,0%
0,2%
0,0%
0,0%
0,5%
51,5%
44,2%
2,8%
1,1%
0,9%
0,0%
0,1%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
0,1%
0,0%
0,6%
0,1%
0,0%
0,0%
0,0%
0,1%
0,4%
0,1%
0,1%
0,5%
0,2%
0,0%
2,5%
62,4%
52,2%
16,0%
5,4%
10,0%
10,7%
43,9%
0,2%
0,0%
0,0%
0,0%
0,0%
0,0%
8
O₃
+48
0,0%
0,1%
0,1%
0,0%
0,0%
0,8%
3,8%
1,7%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
1,6%
0,0%
0,2%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
0,5%
4,4%
4,1%
2,9%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
2,8%
15,6%
6,2%
7,6%
30,9%
0,1%
NO+ (N₂O) O₂(N₂O) O₄*NO+ NO+ (N₂O)₂ O₂(N₂O)₂ O₃(N₂O)₂
+74
+76
+94
+118
+120
+136
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
16,6%
3,7%
0,0%
10,9%
0,0%
0,0%
0,3%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
0,1%
0,0%
0,0%
0,0%
0,6%
0,0%
0,6%
0,2%
0,0%
0,2%
0,0%
0,0%
0,4%
1,7%
0,0%
0,4%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
4,4%
2,5%
0,0%
4,9%
0,0%
0,0%
2,8%
1,1%
0,0%
3,0%
0,0%
0,0%
2,8%
1,4%
0,0%
4,0%
0,0%
0,0%
0,2%
0,1%
0,0%
0,3%
0,1%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
0,1%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
0,2%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
3,4%
1,0%
0,0%
2,0%
0,0%
0,7%
3,0%
1,4%
0,7%
2,9%
0,1%
0,1%
0,2%
0,6%
0,2%
0,3%
0,1%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
3.2 Isobaric interference
(4.2) and polyatomic (4.3) and then further
subdivided.
Three significant cases where isobaric
interference can be eliminated using a specific
mass-shift were discovered.
Almost complete elimination of Rb
was achieved using a mass-shift of +16,
while 91% of all 88Sr was preserved in
the form of reaction product SrO. The
peak-background
ratio
was
considerably higher for Sr (≈27000)
than for Rb (≈73), with a mass shift of
+16.
When analysing with a mass-shift of
+32, 0% of the 44Ca reacted with the
N2O, however 34.5% of all 47Ti reacted
with O2 and formed TiO2. The
corresponding peak-background ratio
was also 85 times higher for 47Ti
(≈5900) than for 44Ca (≈69).
4.1 Suitable mass shifts for analysis
One can identify that when analysing with N2O
most of the elements are preferable to analyse
without mass-shift or with mass-shift +16
(table 4). This is an indication that the most
favourable reaction for a majority of the
elements is oxidation, i.e. the loss of one
electron. This is probably because it acquires
less energy than forming bonds with larger
compounds like N2O or O2∙(N2O). Most of the
analysed elements are reluctant to react
during larger mass-shifts. A considerable loss in
count percentage can be seen after mass shift
+16. When mass shift +48 and higher is
applied there are only 11 cases were the count
percentage exceed 4% and none of those are
in the highest mass-shift (+132) (table 4).
85
When analysing 45 of the 70 elements it is
preferable to use no reaction gas. The reason
why analysis without gas can be preferred for
these elements is that the background created
by the N2O can be higher than the actual
counts of the elements. When analysing with
no gas the background will be lower and the
counts can be analysed with a higher accuracy.
The elements were no reaction gas is better are
generally the elements with the higher mass
numbers. These elements often occur in
smaller concentrations and will therefor easier
become masked by the background generated
by N2O (table 4).
The final case were isobaric could be
eliminated was when a mass-shift of
+48 was used. The percentage of 105Pd
that formed reaction products with O3
was 0%, while 4.1% of 101Ru reacted
and formed RuO3. The peakbackground ratio for 101Ru (≈ 4) was
also 4 times higher than for 105Pd (≈ 0).
3.3 Polyatomic (Molecular)
interference
A decrease of polyatomic interference on 28Si,
30
Si, 31P, 52Cr, 55Mn, 56Fe, 75As and 80Se was
identified when using no shift mode. For Si, P,
Cr, Mn, As and Se the peak-background ratios
got significantly higher when a mass shift was
applied compared to no gas mode.
4.2 Solving isobaric interference
The three significant cases of elimination of
isobaric interferences are discussed separately
in the following section. The data in this study
can be used on all isotopes of the same
element, even though only one isotope was
analysed for each element. The elimination of
interference between e.g. calcium and titanium
can be applied to all of the titanium isotopes,
not just 47Ti. Due to this, a more abundant
4. Discussion
The discussion has been separated in to three
parts. Preferable mass shifts and no gas mode
for analysis is discussed in the first part (4.1).
The spectral interfaces are divided in to isobaric
9
isotope of the same element can be analysed
instead to possibly obtain higher counts, even if
it is usually troubled by interference.
measured and then applied in an equation. The
result is a temperature with an approximated
accuracy of 5°C, if the Ti counts are correct.
Therefore, it is of great significance to get
interference free measurements of titan
concentrations
when
using
this
geothermometer (Wark & Watson,2006).
4.2.1 Rubidium – Strontium
This novel MS/MS ICP-MS technique allows for
a way of separating Rb and Sr without the
previous mentioned isobaric interference with
the help of N2O as a reaction gas. As stated in
3.2 no Rb reacts with N2O, while 91% of the Sr
reacts with N2O and forms SrO. This implies
that there is possibility to avoid the isobaric
interference between 87Rb and 87Sr by
measuring 87Sr as 87Sr+16O → 103SrO and
eliminating the radioactive isotope 87Rb that
previously overlapped with the radiogenic
isotope 87Sr, because it does not react with
N2O forming the +16O-cluster. Even though the
results 3.1 clearly states that analyse of Rb and
Sr are preferably made with no gas there are
far greater benefits when using N2O, such as
the elimination of the isobaric interference
between Sr and Rb and thus enabling the
possibility of Rb/Sr dating using in situ
methods like LA-ICP-MS.
These results also create the possibility of
analysing titanium in calcium-rich minerals
without
the
disturbance
of
isobaric
interference. One application where this would
be preferable is the type of analysis made by
Humpherys (2010), which showed that titanium
concentrations in zonated anorthite can be
used to determine the compositional evolution
of layered intrusions during crystallization. A
similar study when interference free
concentration of Ti would be preferable is
Singer et al. (1995). By using concentration
profiles of titan in plagioclase, calc-alkaline
magma chambers were analysed. Hence, an
interference free in-situ method to determine
titan concentration can decrease both analyse
time and measurement errors.
4.2.2 Calcium – Titanium
4.2.3 Palladium – Ruthenium
The amount of titanium in minerals can be very
small in some cases and there for be difficult to
analyse. If the mineral in question is a calciumrich one, there is the added difficulty of isobaric
interference between Ca and Ti. However, as
stated in 3.2, a solution to the problematics
with measuring the Ti quantity in a Ca-rich
matrix is found. An elimination of the
interference can be achieved with a mass-shift
of +32. This will generate a total mass
percentage of zero for Ca while 34, 5% of Ti is
remnant.
Since there is a low abundance of PGM in the
earth’s crust a low detection limit is crucial
when analysing PGM elements. Another
difficulty is that PGMs often occur in the same
minerals, as they are siderophile (Sulphurloving). The abundance of the PGMs in the
crust vary depending on element. Ruthenium
concentrations is generally smaller (< 1 ng/g-1),
than Pd concentrations (0,1-3 ng/g-1) in crustal
rocks (Rao & Reddi, 2000). In this study a way
of eliminating the isobaric interference
between Pd and Ru has been detected. When
using a mass-shift of +48 zero percent of the Pd
forms reaction products with N2O, while 4.1 %
of the Ru does. Because of the larger
abundance of palladium in the crust and the
fact that these PGMs often occur in the same
minerals a way of separating them can be of
interest, when an analysis of ruthenium is
One application of interference free
determination of titan is when determining the
crystallization temperatures for quartz, using
the geothermometer TitaniQ. To calculate the
crystallization or re-equilibration of the quartz
of interest, the Ti counts in the sample are
10
desired, in a mineral like Pentlandite, (Fe,Ni)9S8,
were both elements are present (Dare et al.,
2010).
study has not concluded how the polyatomic
interferences react with N2O. An interference
of 55Mn e.g. 40Ar15N+ could possibly react with
16
O, get the mass 71 and still result in the same
interference.
Similar
problems
were
28
30
31
52
56
encountered with Si, Si, P, Cr, Fe, 75As
and 80Se. To achieve a complete elimination of
spectral interferences for these elements
knowledge about how the polyatomic
interferences react with N2O is crucial.
4.3 Polyatomic interference
Reaction mode is often used to eliminate
plasma-based interferences like 40ArO+ on 56Fe+
(Sugiyama et al., 2014). This could be achieved
for elements 28Si,30Si,31P,52Cr,55Mn,56Fe,75As and
80
Se. When analysing with no mass shift an
increase in the peak background ratios could be
seen, compared to analysis without N2O. This
indicates a decrease in background compared
to peak values when N2O is applied, which
point towards a decrease in polyatomic
interference. The interference caused by the
plasma or atmospheric gases etc. could thus be
decreased using N2O. All of the elements
(28Si,30Si,31P,52Cr,55Mn,56Fe,75As and 80Se) except
for 56Fe showed a significantly larger increase of
the peak background ratios when a specific
mass shift was applied e.g. the peak
background ratio for 31P with a mass shift of
+16 was 12224 compared to 12 with no gas
applied. This indicates that an even greater
reduction of the polyatomic interference on
these seven isotopes could be achieved using
mass shift mode.
5. Conclusions
In this study the most suitable mass-shifts,
when using N2O as reaction gas for LA-ICP-MS,
was identified for lithium to uranium (table 4).
Three eliminations of isobaric interferences
were identified when using N2O. Titanium could
be analysed without the interference of
calcium with a mass-shift of +16. The higher
accuracy for titanium counts would generate
more precise results for applications of
titanium concentrations, such as the
geothermometer TITANiQ. The second
elimination of isobaric interference was that Sr
could be analysed without disturbance of Rb.
This increases the chances of an in-situ Rb/Sr
dating method in the near future. The final
removal of isobaric interference was between
the platinum group metals Ru and Pd. When
analysing for ruthenium in minerals with both
elements, a mass-shift of +48 can be used to
eliminate the interference. A decrease of
plasma-based polyatomic interference on 28Si,
30
Si, 31P, 52Cr, 55Mn, 56Fe, 75As and 80Se was
identified when using no shift mode. For Si, P,
Cr, Mn, As and Se the peak-background ratios
got significantly higher when a specific mass
shift
was
applied.
When analysing 55Mn with a mass-shift of +16,
optimal counts would be attained according to
the results (table 4). However, the new mass of
71 (55Mn+16O) corresponds to an isobaric
interference with 71Ga. This problem could be
solved if the first quadrupole is set to reject all
masses except 55, i.e. 71Ga would be filtered
out and not continue on to the reaction cell.
The second quadrupole would then be set to
react all masses except 71. Unfortunately, this
6. Acknowledgements
I would like to thank Thomas Zack for supervising this entire study. I also want to thank Andreas
Karlsson for helping me with questions during the study.
11
7. References
Agilent 8800 ICP-QQQ Application handbook. (2013) (1st ed., p. 5).
Balcaen, L., Bolea-Fernandez, E., Resano, M., Vanhaecke, F., (2015). Inductively coupled
plasma - Tandem mass spectrometry (ICP-MS/MS): A powerful and universal tool for
the interference-free determination of (ultra) trace elements - A tutorial review.
Analytica Chimica Acta 894, 7-19.
Bazilio, A., & Weinrich, J. (2012). The Easy Guide to: Inductively Coupled Plasma Mass Spectrometry
(ICP-MS) (1st ed., pp. 4-7). Retrieved from
http://www.ecs.umass.edu/eve/facilities/equipment/ICPMS/ICPMS%20quick%20guide.pdf
Bolea-Fernandez, E., Balcaen, L., Resano, M., & Vanhaecke, F. (2014). Potential of methyl fluoride as a
universal reaction gas to overcome spectral interference in the determination of ultratrace
concentrations of metals in biofluids using inductively coupled plasma-tandem mass spectrometry.
Analytical chemistry, 86(15), 7969-7977.
Dare, S. A., Barnes, S. J., & Prichard, H. M. (2010). The distribution of platinum group elements (PGE)
and other chalcophile elements among sulfides from the Creighton Ni–Cu–PGE sulfide deposit,
Sudbury, Canada, and the origin of palladium in pentlandite. Mineralium Deposita, 45(8), 765-793.
Humphreys, M. (2010). Silicate Liquid Immiscibility within the Crystal Mush: Evidence from Ti in
Plagioclase from the Skaergaard Intrusion. Journal Of Petrology, 52(1), 147-174. Retrieved from
http://dx.doi.org/10.1093/petrology/egq076
Jochum, K., Weis, U., Stoll, B., Kuzmin, D., Yang, Q., & Raczek, I. et al. (2011). Determination of
Reference Values for NIST SRM 610-617 Glasses Following ISO Guidelines. Geostandards And
Geoanalytical Research, 35(4), 397-429. Retrieved from http://dx.doi.org/10.1111/j.1751908x.2011.00120.x
Laser Mode ICP-MS | Quadrupole ICP-MS Lab. (2016). Jsg.utexas.edu. Retrieved 13 April 2016, from
http://www.jsg.utexas.edu/icp-ms/laser/
Lavrov, V., Blagojevic, V., Koyanagi, G., Orlova, G., & Bohme, D. (2004). Gas-Phase Oxidation and
Nitration of First-, Second-, and Third-Row Atomic Cations in Reactions with Nitrous
Oxide: Periodicities in Reactivity. J. Phys. Chem. A, 108(26), 5610-5624. Retrieved from
http://dx.doi.org/10.1021/jp049931d
May, T., & Wiedmeyer, R. (1998). A table of polyatomic interferences in ICP-MS. Atomic Spectroscopy,
19(5), 150 and 152. Retrieved from https://www.perkinelmer.com/CMSResources/Images/4474379ATL_TableOfPolyatomicInterferences.pdf
Rao, C. R. M., & Reddi, G. S. (2000). Platinum group metals (PGM); occurrence, use and recent trends
in their determination. TrAC Trends in Analytical Chemistry, 19(9), 565-586.
Singer, B., Dungan, M., & Layne, G. (1995). Textures and Sr, Ba, Mg, Fe, K, and Ti compositional
profiles in volcanic plagioclase: Clues to the dynamics of calc-alkaline magma chambers. American
Mineralogist, 80(7-8), 776-798. Retrieved from
http://www.degruyter.com/view/j/ammin.1995.80.issue-7-8/am-1995-7-819/am-1995-7-819.xml
Sugiyama, N., & Nakano, K. (2014). Reaction data for 70 elements using 02, NH3 and H2 gases with
Agilent 8800 Triple Quadrupole ICP-MS (1st ed., pp. 1-2). Agilent Technologies.
12
Tanner, S. & Baranov, V. (1999). A dynamic reaction cell for inductively coupled plasma mass
spectrometry (ICP-DRC-MS). II. Reduction of interferences produced within the cell. J Am Soc Mass
Spectrom, 10(11), 1083-1094. Retrieved from http://dx.doi.org/10.1016/s1044-0305(99)00081-1
The 30-Minute Guide to ICP-MS. (2011) (1st ed., p. 2). Retrieved from
https://www.perkinelmer.com/CMSResources/Images/44-74849tch_icpmsthirtyminuteguide.pdf
Wark, D. & Watson, E. (2006). TitaniQ: a titanium-in-quartz geothermometer. Contributions To
Mineralogy And Petrology, 152(6), 743-754. Retrieved from http://dx.doi.org/10.1007/s00410-0060132-1
Zack, T., & Hogmalm, J. (2016) Laser ablation Rb/Sr dating by online chemical separation of Rb and Sr
in an oxygen-filled reaction cell. Submitted to Chemical Geology, under revision.
13
8. Appendix
Table 5. The calculated peak-background ratios for 70 elements from Li to U with selected mass shifts. The highest peakbackground ratios for each element are accented with blue. The standard NISTSRM 610 was when analyzing all elements
except MT Apatite for P, Po727 for S, Ru, Rh, Pd, Os, Ir, Pt and GSE-1G for Cl and Br.
O₂
O₃
N
O
NO
O₂(N₂O)
O₂(N₂O)₂
+0
+14
+16
+30
+32
+48
+76
+120
No gas applied
Element Atomic NrMass Nr Peak-Bkg ratio Peak-Bkg ratio Peak-Bkg ratio Peak-Bkg ratio Peak-Bkg ratio Peak-Bkg ratio Peak-Bkg ratio Peak-Bkg ratio Peak-Bkg ratio
Li
3
7
2590
0
0
-1
0
0
0
0
636
Be
4
9
914
3
101
1
41
1
287
188
67148
B
5
11
91
3
56
-1
15
2
5
0
76
Na
11
23
3830
0
11
8
1
98
-1
3
6081
Mg
12
24
744
11
592
3
119
1
0
0
43675
Al
13
27
4178
1
2929
5
10863
3861
1636
55
2278
Si
14
28
16
47
10
389
426
456
442
368
3
P
15
31
72
278
12224
8538
203
323
158
144
12
S
16
32
49
57
62
67
71
0
0
2
2
Cl
17
35
1
5
0
0
0
0
-1
0
2
K
19
39
8
0
1
0
-1
0
1
0
0
Ca
20
44
11
992
21359
3126
69
52
11
0
76
Sc
21
45
12
3784
45445
753
657
75
33
15
1438
Ti
22
47
381
2158
952
50
5938
0
765
845
1841
Ti
22
48
3217
2078
8927
761
7496
22
3691
7894
789
V
23
51
16124
2453
29130
553
31262
25
499
10203
1460
Cr
24
52
359
121
372
40
269
3159
4
516
3
Mn
25
55
598
7
939
0
12
0
1
3
5
Fe
26
56
125
54
122
121
1
112
23
0
3
Co
27
59
3282
202
21328
703
30
41
3
0
84943
Ni
28
60
1035
76
443
62
25
6
15
0
10989
Cu
29
63
3672
-1
243
3
1
3
2
0
4334
Zn
30
66
1067
5
3653
0
4
0
1
0
258
Ga
31
71
29815
2
748
9
3
1
1
2
18427
Ge
32
72
199
115
923
59
28
3
0
0
128
As
33
75
80
61
112
50
67
9
0
0
75
Br
35
81
7
1
4
0
0
0
1
-1
0
Se
34
82
52
277
103
3
6
0
0
0
13
Rb
37
85
874
0
73
-1
0
0
0
0
1644
Sr
38
88
19581
200
27248
753
62
6
0
0
627492
Y
39
89
7488
17913
84751
251
1290
1
28
3
163955
Zr
40
90
5465
18009
9376
697
64023
0
4191
2484
167413
Nb
41
93
19276
18099
47349
34085
112380
1272
7575
7304
658040
Mo
42
95
33435
3031
3066
567
1234
1929
88
134
21061
Ru
44
101
1786
82
87
15
23
84
0
0
3756
Ru
44
102
3357
101
225
25
34
112
0
0
7054
Rh
45
103
6315
112
524
40
2
0
0
0
23680
Pd
46
105
653
653
35
0
2
0
0
0
5948
Ag
47
107
11132
0
22
0
0
0
0
0
9105
Cd
48
111
4014
0
436
0
1
0
0
0
4290
Sn
50
118
18773
51
18316
4
2
0
0
0
4461
Sb
51
121
10565
235
2188
9
1
2
0
4786
Te
52
125
893
181
974
0
0
0
0
5588
Cs
55
133
3150
0
8
0
0
0
0
8241
Ba
56
137
541
65
18309
112
19
0
0
55272
La
57
139
2519
26218
146507
271
30
0
0
495178
Ce
58
140
2404
17676
137072
51
1070
1
4
518875
Pr
59
141
3905
25637
166866
138
156
0
0
599606
Nd
60
146
840
2522
31004
30
16
0
0
101561
Sm
62
147
1357
184
26677
29
5
0
0
45144
Eu
63
153
5654
584
100248
176
36
0
2
302270
Gd
64
157
1166
2462
25909
30
18
0
2
88198
Tb
65
159
6812
15461
148371
79
656
0
16
546597
Dy
66
163
3542
860
37507
4
24
0
135263
Ho
67
165
16515
3224
141643
14
231
0
518845
Er
68
166
5489
1253
49414
0
261
0
173799
Tm
69
169
23167
559
138414
27
275
1
172191
Yb
70
172
6725
95
28767
15
5
0
118749
Lu
71
175
7910
1405
142910
5
3830
0
469947
Hf
72
178
742
2720
7956
492
21689
7
131784
Ta
73
181
3116
8951
25737
7327
56604
3072
440423
W
74
182
1898
3111
7720
2513
3565
3474
112565
Re
75
185
2794
732
496
157
253
293
4107
Os
76
189
311
147
137
24
75
57
3059
Ir
77
193
999
134
718
66
351
1014
10667
Pt
78
195
583
19
164
3
605
2
3048
Au
79
197
3736
0
121
4
7
7717
Tl
81
205
9447
0
1
0
0
9345
Pb
82
208
37920
2
4864
0
0
74020
Bi
83
209
21760
7
2529
0
0
41597
Th
90
232
176
12328
9333
0
0
229928
U
92
238
554
17395
32833
0
0
218208
14
Table 6. The calculated peak-background for 70 elements from Li to U with selected mass shifts. The highest peakbackground for each element are accented with purple. The standard NISTSRM 610 was when analyzing all elements
except MT Apatite for P, Po727 for S, Ru, Rh, Pd, Os, Ir, Pt and GSE-1G for Cl and Br.
N
O
NO
O₂
O₃
O₂(N₂O) O₂(N₂O)₂
+0
+14
+16
+30
+32
+48
+76
+120
No gas applied
Element Atomic Nr Mass Nr Peak-Bkg Peak-Bkg Peak-Bkg Peak-Bkg Peak-Bkg Peak-Bkg Peak-Bkg Peak-Bkg Peak-Bkg
Li
3
7
25904
0
0
-20
20
0
0
0
2113061,501
Be
4
9
9142
50
1010
20
1650
10
2870
1880
671484,9369
B
5
11
19055
30
560
-20
150
20
50
0
658691,1013
Na
11
23 259923005
0
2560
80
10
980
-10
30
1154701557
Mg
12
24
847985
110
225151
30
1190
10
0
0
3723206,805
Al
13
27 19138658
10
351462
50 108626 154438
16359
550
79496793
Si
14
28 38132189 1955970 157960506 3642453 35985930 9539812 1495233 419345
1104723330
P
15
31 4596715 3794890 26284020 341541
14176
6451
1580
1440
556820
S
16
32 17311636 23882481 12839797 810414 21405791
650
30371
20
87317552
Cl
17
35
10
50
-40
0
0
0
-10
0
18175
K
19
39 1850992
-10
10
10
-10
0
10
0
4796579
Ca
20
44 1419349
9923 8543682
31260
2060
520
110
0
27603466
Sc
21
45
245526
37842 2726791
7532
6571
750
330
150
6052720
Ti
22
47
22865
21584
47587
500
59385
0
7652
8453
460154
Ti
22
48
353859
83131 1428403
7612 599691
220
73830
78939
7346148
V
23
51
483739
49071 1165253
5531 625245
250
69814 102033
6219712
Cr
24
52 1747335
9713
89325
400
34987
31591
4030
5161
5242527
Mn
25
55 1974797
1630
685444
110
970
20
240
30
6766507
Fe
26
56
842395
4881 1563511
3633
2961
4491
230
0
6530492
Co
27
59 1608480
4041
426575
7032
300
410
30
0
5096746
Ni
28
60
497030
760
44328
620
250
60
150
0
1318727
Cu
29
63 1395405
-10
2430
30
10
30
20
0
3120538
Zn
30
66
384245
50
36531
0
40
0
10
0
799945
Ga
31
71 1192618
20
22455
90
30
10
10
20
2948374
Ge
32
72
117124
4601
378559
590
280
30
0
0
1265499
As
33
75
61577
8542
336408
500
670
90
0
0
1002603
Br
35
81
4441
120
8764
-20
20
0
10
-30
40230
Se
34
82
16779
2770
5131
30
60
0
0
0
80165
Rb
37
85 1520368
0
730
-10
0
0
0
0
4308848
Sr
38
88
195809
2000 2179882
7532
620
60
0
0
6275004
Y
39
89
74882 179130 2542589
2510
12895
10
280
30
6558350
Zr
40
90
54649 180087
281273
6972 640242
0
41907
24842
3348346
Nb
41
93
192762 180994
473487 340854 1123797
12715
75755
73042
6580398
Mo
42
95
334347
30308
30659
5671
12345
19292
880
1340
1053076
Ru
44
101
17860
820
870
150
230
840
0
0
37563
Ru
44
102
33574
1010
2250
250
340
1120
0
0
70538
Rh
45
103
126294
1120
5241
400
20
0
0
0
236802
Pd
46
105
32672
40
350
0
20
0
0
0
59485
Ag
47
107
667925
0
430
0
0
0
0
0
1456813
Cd
48
111
120410
0
4361
0
10
0
0
0
257437
Sn
50
118
375466
510
183158
40
20
0
0
0
1427671
Sb
51
121
633909
2350
196882
90
10
20
0
1770813
Te
52
125
35719
1810
9743
0
0
0
0
111765
Cs
55
133 1448962
0
80
0
0
0
0
4367994
Ba
56
137
5411
650
183092
1120
190
0
0
552722
La
57
139
25190 262180 1465073
2710
300
0
0
4951854
Ce
58
140
24038 353523 1370724
510
10704
10
40
5188746
Pr
59
141
39048 256366 1668658
1380
1560
0
0
5996063
Nd
60
146
8402
25220
310043
300
160
0
0
1015624
Sm
62
147
13566
1840
266769
290
50
0
0
902907
Eu
63
153
56540
5841 1002478
1760
360
0
20
3022741
Gd
64
157
11659
24619
259089
300
180
0
20
881995
Tb
65
159
68115 154613 1483710
790
6562
0
160
5466048
Dy
66
163
35419
8603
375071
40
240
0
1352633
Ho
67
165
165155
32243 1416431
140
2310
0
5188451
Er
68
166
54895
12525
494136
0
2610
0
1737994
Tm
69
169
231671
5591 1384142
270
2750
10
5165966
Yb
70
172
67253
950
287666
150
50
0
1187487
Lu
71
175
79096
14047 1429101
50
38298
0
4699466
Hf
72
178
7422
27204
79562
4921 216889
70
1317842
Ta
73
181
31161
89515
257372
73274 566043
30722
4404227
W
74
182
18982
31112
77201
25131
35652
34740
1125648
Re
75
185
27935
7322
4961
1570
2530
2930
205377
Os
76
189
3110
1470
1370
240
750
570
30600
Ir
77
193
9993
1340
7182
660
3511
10144
106679
Pt
78
195
5831
190
1640
30
6051
20
30490
Au
79
197
37365
0
1210
40
70
77169
Tl
81
205
94468
0
10
0
0
373804
Pb
82
208
379202
20
48639
0
0
1480426
Bi
83
209
652821
70
25292
0
0
2495904
Th
90
232
1760 123278
93328
0
0
2299283
U
92
238
5541 173948
328339
0
0
2182083
15
© Copyright 2026 Paperzz