! ! C 7 ! ! " ./ ! < " ! ! 7 $ % ! ! % " < ./ . / d n1 n2 n3 = n2 " x n1 B A E d n2 θ C y 5& n3=n1 z 5' 4 k 3 . / " ! ? $ ?% λ = λ0 /n1 k = nk0 c = c0 /n1 ? y x − z θ z θ θ̄c = 90◦ − θc < φr < 4 7 < # ! ? # < ! x 7 A B , 2π < A C < φr < AC = d/ sin θ AB = AC · cos 2θ AC − AB = AC(1 − cos 2θ) = d (2 sin2 θ) sin θ = 2d sin θ , 2π (2d sin θ) − 2φr = 2πm λ m = 0, 1, 2 · · · 50 # φr ( $ <% 7 θ = θm m = 1, 2 · · · λ sin θm = m 2d H m θm ! mth m = 1 θ1 = sin−1 (λ/2d)1 m 7 x kx = nk0 sin θm = (2π/λ) sin θm , kxm ≡ hm = m π d m = 1, 2 · · · ±θ z y − z (0, ky , kz ) (0, −ky , kz )1 y z βm z k kzm ≡ βm = k cos θm = k 1 − sin2 θm = k2 − m2 π 2 d2 * θm kym βm , - k , θm & φr m sin θ0 = λφ 2πd r 55 kxm x xm ! " ! Am exp(−ikx − iβm z) Am exp(ikx − iβm z) 7 ! Ex (x, z) ∝ um (x) exp(iβm z) um (x) = ⎧ 2 ⎨ cos mπx d d 2 mπx ⎩ sin d d m = 1, 3, 5 · · · m = 2, 4, 6 · · · um(x) H x z 56 x #" $ < θ ≤ θ̄c # m θi H θi > θ̄c < 1 ! M ? M = Int( sin θc ) λ/2d $% " 0 " µ = 1 √ nj = r,j j = 1, 2, 3 (x) = r (x)0 n1 = n3 = −µ(x) = ∇(∇ · E) − ∇2 E ∇ × (∇ × E) ∂2E r (x) ∂ 2 E = − ∂t2 c2 ∂t2 ∇ · D = 0 - r = r (x) = 0 ∇·D + (∇) · E = (∇ · E) + 0 ( ∂r )Ex = ∇ · E ∂x ⇒ = − 1 ( ∂r )Ex ∇·E r ∂x ∇2 E ∇ · E ≈ 0 - 9 ? ? ! E 5: E = Ey ŷ ⇒ Ex = 0 ⇒ ∇ · E = 0 $3 9 ? ! ? H % 2 - ? H - ∂ 2 E/∂y =0 y 7 ( ∂2 ∂2 r ∂ 2 E(x, z, t) + ) E(x, z, t) = 2 2 2 2 ∂x ∂z c ∂t D z, t) ! E(x, z ω i(ωt−βz) E(x, z, t) = E(x)e 9 ∂ 2 E(x) ω2 2 E(x) = − − β r 2 E(x) ∂x2 c 2 2 nj ω = − 2 E(x) c nj j (j = 1, 2, 3) k02 = ωc j 2 2 ∂ 2 E(x) ∂x2 + (n2j k02 − β 2 )E(x) =0 - β z 2 β 2 n2j k02 J! h2 = n2j k02 − β 2 % h2 > 0 h " n2j k02 > β 2 ∂ 2 E(x) =0 + h2 E(x) ∂x2 E(x) = A cos hx + B sin hx % h2 < 0 h = iγ " 5; n2j k02 < β 2 ∂ 2 E(x) =0 − γ 2 E(x) 2 ∂x E(x) = Aeγx + Be−γx & & ' β n2 > n3 > n1 , β % β > n2 k0 > n3 k0 > n1 k0 0 " % n2 k0 > β > n3 k0 > n1 k0 $ & 0% $ e−x 5= & ex 0 x < 0% E ∂ E/∂x ! .! / . / % n2 k0 > n3 k0 > β > n1 k0 % n2 k0 > n3 k0 > n1 k0 > β - & ' 0 . / . / β k ' k0n2 n1 n2 θi k0n2 θi h=kx β D sin θi = β k0 n2 $% $% β = k0 n1 sin θi = k0 n1 n1 = k0 n2 n2 G < ( sin θc = nn ! < D $% $% G $% < ! 0 4 H 1 2 5A ! ( ' x n1 a d=2a n2 z 0 -a n3=n3 H ? ! E = E ŷ - n3 = n1 E & 0 γ = ( )% β 2 − n21 k02 > 0 h = n22k02 − β 2 Ea *% Es E = Er e−γx E = Es cos hx + Ea sin hx B x z y E k # & E H ! , - E = Ey ŷ $ ? H H % ! B = Bx x̂ + By ŷ + Bz ẑ = µHx x̂ + µHy ŷ + µHz ẑ - ! k E # = − ∂B ∇×E ∂t ⇒ = ∇×E x̂ ∂ ∂x 0 ŷ ẑ ∂ ∂y ∂ ∂z Ey 0 =− ∂Ey ∂Ey x̂ + ẑ = −iωµHx x̂ − iωµHz ẑ ∂z ∂x " ! x z Hz H ∂Ey /∂x 6B ? Ey ∂Ey /∂x $ 4 E ∂E/∂x > ! ' x = a Es cos ha = Er e−γa E ∂E/∂x hEs sin ha = γEr e−γa J ha tan ha = γa $% h γ a " 7 −ha cot ha = γa $% ! h2 = n22 k02 − β 2 γ 2 = β 2 − n21 k02 h β a2 γ γ 2 a2 + h2 a2 = (n22 − n21 )k02 a2 ≡ V2a2 $% V = k0 n22 − n21 γ h $ β % P$% $% $% $% Q # 2 ha tan ha = √ V2 a2 − h2 a2 ! h γa ha $% $% 6& γa 5 4 3 s a s a 2 1.7 1 4 1 0 1 ha 2 3 4 5 6 Graphical construction to find the modes in a planar waveguide. The curves labelled "s" and "a" represent symmetric and antisymmetric modes respectively and the circle, radius aV, is shown for a=1, 1.7 and 4. 2 & h γ β β . / β . / ' $ % 7 $n1 = n3 % 0 " h $ γ % " ! ! 5 * 7 $ aV% γ . !/ 6 + $5% , , 1 . / - 7 ! I , λ a< 4 n22 − n21 6' λ : 1 + Int( 2aV ) π ; m = 0, 1, 2, 3, · · · $ % ! E(x, y)e−iβmz ./ β $ β % ! $! % ! = $ % ! E(x, y, z) = m (x, y)e−iβmz am E m am . / ! - # ( , ! $ % (# )* C ! ! ! x y " ! n2 n1 cladding core n1 n2 2a 60 ∇2 E + n2j k02 E = 0 j = 1, 2 ! 1 ∂ ∂E 1 ∂2E ∂2E + n2j k02 E = 0 (r )+ 2 2 + 2 r ∂r ∂r r ∂θ ∂z " z7 e−iβz E(r, θ, z) = E(r, θ)e−iβz 1 ∂2E 1 ∂ ∂E (r ) + 2 2 + (n2j k02 − β 2 )E = 0 r ∂r ∂r r ∂θ 2 E(r, θ) = R(r)Θ(θ) ∂2E d2 Θ = R ∂θ2 dθ2 dR ∂E =Θ ∂r dr Θ dR d2 R 1 ∂ ∂E (r )= +Θ 2 r ∂r ∂r r dr dr d2 R R d2 Θ Θ dR + Θ 2 + 2 2 + (n2j k02 − β 2 )RΘ = 0 r dr dr r dθ r2/RΘ r 2 d2 R r dR 1 d2 Θ 2 2 2 2 + r (nj k0 − β ) = − + ≡ l2 2 2 R dr R dr Θ dθ l2 ? # ? d2 Θ + l2 Θ = 0 dθ2 Θ(θ) = A cos lθ + B sin lθ ! ? ! $ % l=0 65 l=3 # l2 d2 R 1 dR 2 2 2 + k − β − )R = 0 + (n j 0 dr 2 r dr r2 β < n2 k0 β > n1 k0 " ! κ2 = n22 k02 − β 2 γ 2 = β 2 − n21 k02 4 d2 R 1 dR l2 2 + (κ + − )R = 0 dr 2 r dr r2 core : cladding : d2 R 1 dR l2 2 − (γ + + )R = 0 dr 2 r dr r2 + • 4 κ2 − rl > 0 .+ ! l/ Jl (κr) + Jl (κr) r ( κr 1 r Jl (κr) 2 2 Jl (κr) 1 π 2 cos[κr − (l + ) ] πκr 2 2 κr 1 • 66 4 κ2 + rl > 0 .+ l/ Kl (γr) Kl (γr) κr 1 2 2 e−γr Kl (γr) √ 2πγr - $l > 0% " β ! F κ γ κ2 + γ 2 = k02 (n22 − n21 ) ? $V % !2 V = k0 a n22 − n21 6: $ !% 7 ! 2 • V number of modes = 4 • V (polarization degeneracies included) π2 ? 7 ! V ∝ a V 2 V < 2.405 ! D ! , 1 7 ! ! ! , λc = 2πa 2 n2 − n21 2.405 . 7 !/ 7 ! 7 ? $ ? ! 7 ! % ( 7 ? x̂ ŷ ! β . / ! ! J0 + - + 7 ! E(r) = E0 e−r 2 /w 2 w ! 1.619 w 2.87 = 0.65 + −3/2 + 6 a V V A:K + λ = 0.86λc 2λc & V () a * -w 0 6; w ) " ! " ! θ ! θ̄c " 7 θa θ̄c 2 1 · sin θa = n1 sin θ̄c sin θa = n1 (1 − cos θ̄c )1/2 = n1 [1 − ( n2 2 1/2 ) ] = (n21 − n22 )1/2 n1 θa = sin−1 NA NA = (n1 − n2 )1/2 ! θa ! ! G θa ! 7 ! 4 ! θa ! C ! 7 ! 6=
© Copyright 2026 Paperzz