1/17/2012 Math 114 – Rimmer 12.6 Quadric Surfaces All traces are ellipses a = b = c ⇒ sphere x2 y2 z 2 + + =1 a2 b2 c2 Math 114 – Rimmer 12.6 Quadric Surfaces Horizontal traces are ellipses Vertical traces are hyperbolas Axis of symmetry corresponds to the variable with negative coefficient x2 y 2 z 2 + − =1 a 2 b2 c2 1 1/17/2012 Math 114 – Rimmer 12.6 Quadric Surfaces Vertical traces are hyperbolas Horizontal traces are ellipses z = k, k > c Axis of symmetry corresponds to the variable with positive coefficient x2 y 2 z 2 − 2 − 2 + 2 =1 a b c Math 114 – Rimmer 12.6 Quadric Surfaces Horizontal traces are ellipses Vertical traces are hyperbolas x = k ⇒ hyperbolas k ≠0 y = k ⇒ hyperbolas k = 0 ⇒ lines Axis of symmetry corresponds to the z 2 x2 y 2 = + c2 a 2 b2 variable on the left side 2 1/17/2012 Math 114 – Rimmer 12.6 Quadric Surfaces Horizontal traces are ellipses Vertical traces are parabolas Axis of symmetry corresponds to the variable raised to the first power z x2 y2 = + c a2 b2 Math 114 – Rimmer 12.6 Quadric Surfaces Horizontal traces are hyperbolas Vertical traces are parabolas z x2 y2 = − c a 2 b2 3 1/17/2012 Math 114 – Rimmer 12.6 Quadric Surfaces x2 y 2 + =1 a 2 b2 Math 114 – Rimmer 12.6 Quadric Surfaces y2 x2 − =1 a2 b2 4 1/17/2012 Math 114 – Rimmer 12.6 Quadric Surfaces y = ax 2 Math 114 – Rimmer 12.6 Quadric Surfaces VII IV II III VI I VIII V 5 1/17/2012 Math 114 – Rimmer 12.6 Quadric Surfaces y2 31. x = 1 2 + z2 1 3 x y2 z2 = + 6 3 2 or elliptic paraboloid vertex: ( 0, 0, 0 ) opens in the positive x − direction y2 z2 − 4 1 32. x = hyperbolic paraboloid Math 114 – Rimmer 12.6 Quadric Surfaces 36 = −36 + ___ 4 + 4 z 2 − 24 z + ___ 4 + ___ 36 33. 4x 2 + y 2 − 4 y + ___ ( ) ( ) 36 4 + 4 z 2 − 6 z + ___ 9 = −36 + ___ 4 + ___ 4x 2 + y 2 − 4 y + ___ 2 2 4x 2 + ( y − 2 ) + 4 ( z − 3) = 4 2 2 x 2 ( y − 2 ) ( z − 3) + + =1 1 4 1 ellipsoid center: ( 0, 2,3) 6 1/17/2012 Math 114 – Rimmer 12.6 Quadric Surfaces 34. 4 y 2 − 16 y + ___ 16 z 2 − 4 z + ___ 16 + ___ 4 = −20 + x + ___ 4 ( ) ( ) 16 + ___ 4 y 2 − 4 y + ___ 4 + z 2 − 4 z + ___ 4 4 = −20 + x + ___ 2 2 4 ( y − 2) + ( z − 2) = x 2 x ( y − 2) ( z − 2) = + 4 1 4 2 elliptic paraboloid vertex: ( 0, 2, 2 ) Math 114 – Rimmer 12.6 Quadric Surfaces Summary: x2 y2 z 2 + + =1 a 2 b2 c2 Ellipsoid x2 y2 z2 + − =1 a 2 b2 c 2 Hyperboloid of one sheet 2 − 2 all variables present 2 x y z − 2 + 2 =1 2 a b c z 2 x2 y2 = + c2 a 2 b2 Hyperboloid of two sheets all variables squared Cone ( elliptic ) z x2 y 2 = + c a 2 b2 Paraboloid ( elliptic ) z x2 y2 = − c a2 b2 Paraboloid ( hyperbolic ) all variables present one variable not squared one variable not present ⇒ cylinder opening in the direction of the missing variable x2 y2 x2 z 2 z = ax 2 Parabolic cylinder + 2 = 1 Elliptic cylinder − = 1 Hyperbolic cylinder 2 a b a 2 b2 7
© Copyright 2026 Paperzz