Shields-1, a CubeSat with a radiation shielding research payload D. Laurence Thomsen III1, Wousik Kim2, Nathanael A. Miller3, Amanda M. Cutright3, and James W. Cutler4 (1) NASA Langley Research Center, Advanced Materials and Processing Branch, 6A West Taylor Street, MS 226, Hampton, VA 23681. (2) Jet Propulsion Laboratory, Mission Environments Group, 4800 Oak Grove Drive, MS 122-107, Pasadena, CA 91109-8099. (3) NASA Langley Research Center, Mechanical Systems Branch, 1 North Dryden Street, MS 432, Hampton, Virginia 23681 (4) University of Michigan, Department of Aerospace Engineering 1320 Beal Avenue, 3013 FXB Building, Ann Arbor, MI 48109-2140. Agenda I. Materials Advanced Materials and Processing Branch, NASA Langley Research Center II. Shields-1: 1. 2. 3. 4. 5. III. IV. V. VI. Mission Overview Experiment Overview Space Environment Dosimetry Radiation Shielding Experiment Conclusion Collaborators Acknowledgements Questions Materials Advanced Materials and Processing Branch Materials for Extreme Environments • Extreme-Use Temperature Composites • Radiation Shielding • Refractory Ceramics • Materials on The International Space Station Experiment (MISSE) MISSE deployment on ISS, containing NASA LaRC Materials Advanced Materials, Polyimide Resins and Composites NASA LARC Advanced Materials R&D Maturation of PETI-5: Requirements Driven High Performance Adhesive and Composite Matrix Resin •About 20,000 pounds of IM7/PETI-5 unidirectional tape prepared in the HSR program • Performance at 350°F for 60,000 hrs (previously unattainable) • Technology patented and licensed to 4 companies Polyimide Based R&D 100 Winners 2005 PETI-330 High Temperature Resin 2001 TEEK Polyimide Foam PETI-5/IM7 Skin Stringer Panel (6 ft x 10 ft) 2000 2000 Macro Fiber Atomic Oxygen Composite Actuators Resistant Polymers 1996 LaRC -SI Methods of Making Atomic Number Z-grade Radiation Shielding Ta CF Titanium 6-4 Tantalum Copper Ta on IM-7 Carbon Fiber (CF) Fabric SEM cross-sectional image Thickness ~196 - 210mm 5 cm Schematic of Z-grade Lay-up with Fiber Metal Laminate U.S. Patent 8,661,653, 4 March 2014, “Methods of Making Z-Shielding.” D.L. Thomsen III, R.J. Cano, B.J. Jensen, S.J. Hales, and J.A. Alexa. 2 mil Ta coating on Al 6061 Radio Frequency (RF) Plasma Spray Ta on Aluminum (Al) Ta RF Plasma Spray Coated Al Radiation Shielding 2 mil Ta coating on Al 6061 Ta Ta Al Al 5 cm 2 mil Ta coating on Al 6061 RF Plasma Spray Ta on Aluminum (Al) • Disappearance of pores, when coated on Al sheet. • RF Plasma Spray process is variable Rf Plasma Spray Ta Foil Properties Tantalum Material Properties Density (g/cm3) Volume Resistivity (mohms-cm) Crystal Structure Rf Plasma Spray Ta (Z=73) 16.02 +/- 0.02 49 +/- 6 bcc Bulk Ta 16.6 13 bcc 1. Thin Film Ta 15.6 25-50 bcc 1. Reference 1. Maissel and Glang, Handbook of Thin Film Technology, McGraw Hill Publishing, 1970. Radio Frequency Plasma Spray Facility 1 NASA-LaRC RF Plasma Spray Facility 2 Equipment Schematic Powder Inject or Probe Plasma Spray Chamber RF Torch St ing Rot at ional/ Translat ional Shaft Rot ary wat er cooling coupler Melt ed Part icles 1 2 0 RPM 2 "/ sec. Mandrel 3 Chamber Interior 4 Metal Deposition on Rotating Substrate RF Torch Plasma Plume Mandrel Metal Deposit Shields-1 Shields-1 CubeSat Mission Overview Shields-1 focuses on enabling future research and commercial space technology mission by reducing the harmful effects of harsh radiation environments to spacecraft. This is accomplished by raising the TRL of Atomic Number (Z) grade radiation shielding technologies. Total ionizing dose (TID) environment: Shielddose-2 Calc: 2.70 krad/yr , 3 g/cm2 Al Mission features: - Radiation Shielding Experiment - Secondary small satellite payload mission planned for Geostationary Transfer Orbit (GTO) - Charge Dissipation Film - Vault enables use of COTS components Electron Belt Proton Belt Shields-1 Experiment Overview 5 cm Shields-1 provides performance data of multiple radiation shielding materials that ultimately enable the success of future missions 2 mil Ta coating on Al 6061 TID RF Plasma Spray Ta on Al Areal density RF Plasma Spray Ta Carbon Fiber Laminate Shields-1 3U CubeSat Schematic Charge Dissipation Film Luna Innovations , NASA STTR Program Graphical Concept of the Dose Depth Curve (DDC) demonstrating Shields-1 ability to provide data to validate atomic number (Z) grade radiation shielding solutions Space Environment Comparison: GTO and P-LEO Electron Fluence, 1 year 1.E+16 1.E+15 1.E+14 1.E+13 1.E+12 1.E+11 1.E+10 1.E+09 1.E+08 1.E+07 1.E+06 GTO P-LEO 0.1 1 10 100 1000 Log Integral Electron Fluence (cm-2) Log Integral Proton Fluence (cm-2) Proton Fluence, 1 year 1.E+16 1.E+15 1.E+14 1.E+13 1.E+12 1.E+11 1.E+10 1.E+09 1.E+08 1.E+07 1.E+06 GTO P-LEO 0.01 1.E+10 1.E+09 Shielded GTO, Al 3 g/cm2 Shielded P-LEO, Al 0.5 g/cm2 1.E+08 0.1 1 10 Log Energy (MeV) 0.1 1 10 Log Energy (MeV) Log Integral Electron Fluence (cm-2) Log Integral Proton Fluence (cm-2) Log Energy (MeV) 100 1000 1.E+11 1.E+10 1.E+09 1.E+08 Shielded GTO, Al 3 g/cm2 1.E+07 1.E+06 Shielded P-LEO, Al 0.5 g/cm2 1.E+05 0.01 0.1 1 10 Log Energy (MeV) SPENVIS: AP8min-AE8 Max Model for GTO and Polar LEO, ELaNa III Satellite Environment Total Ionizing Dose (TID) Environment GTO: • GTO Orbit: 23o inclination, 37,500 km apogee, 240 km perigee • Shields-1 Initial Planning Environment • Total ionizing dose (TID) environment: Shieldose-2 calculation2: 2.7 kRad/yr , 3 g/cm2 Al Polar- LEO: • Orbit: 102o inclination, 775 km apogee, 458 km perigee • ELaNa III1 CubeSat environment: AUBIESAT-1, RAX-2, DICE, Explorer, M-Cubed/COVE. • TID environment Shieldose-2 calculation2: 5.0 kRad/yr total dose, 0.5 g/cm2 Al 1. http://www.nasa.gov/pdf/627975main_65121-2011-CA000-NPP_CubeSat_Factsheet_FINAL.pdf 2. SPENVIS, https://www.spenvis.oma.be/, Shieldose-2 calculation, AP8min-AE8 Max Model Environment. GTO Trapped Proton Challenges: SEUs • CRRES1 experimentally determined single event upset (SEU) rate for most sensitive electronic devices: 10-3 bit-1 / day in Proton Belt (L<2.5) and 10-5-6 10-3 bit-1 / day in regions outside of proton belt (L>2.5). • 10-3 bit-1 / day in Proton Belt (L<2.5) is two orders of magnitude higher SEU rate than recommended2-3 for COTS. 1. E.G. Mullen and K.P. Ray, “Microelectronics Effects as Seen on CRRES”, Adv. Space Res. Vol. 14, No. 10, pp. 797- 807, 1994. 2. J.R. Wertz and W.J. Larson, Space Mission Analysis and Design, 3rd Edition. 2007, Microcosm Press, p. 976. 3. NASA Preferred Reliability Practices, PD-ED-1258. “Space Radiation Effects on Electronic Components in Low-Earth Orbit”, April 1996. p. 7. Dosimetry and Data Collection Plan Past Space Dosimeter Experiments: Dosimetry sample geometry options with larger areal density backing than sample. GOES-7 (1978): 1. Approximate half-spherical shell CRRES (1990) LDEF (1991) 0 METEOSAT-3(1991) (Side-view) Van Allen Belt Storm Probe (2013) To capture Trapped Proton and Electron belt Doses, greater and less than L shell ~2.5 Radiation shielding sample RADFET, dosimeter backing 2. Approximate Infinite Slab FOV deg L shell ~ 2.5 Electron Belt region radius Proton Belt region (Side-view) FOV = field of view Radiation Shielding Experiment Experimental Samples 5 cm Baseline Samples 1. 2. 3. 4. Ta 2 mil Ta coating on Al 6061 1. RF Plasma Spray Ta on Al RF Plasma Spray Tantalum Foil Tantalum Sheet Carbon Fiber Laminate Aluminum Al half-sphere geometry baseline dose depth curve 2. RF Plasma Spray Ta Carbon Fiber Laminate Log Dose in Si (Rad/year) 1000000 Shieldose-2 model center of Al Spheres dose divided by 2 for half-sphere sample geometry. 100000 10000 Trapped Protons Trapped Electrons Bremsstrahlung 1000 100 10 1 0 1 2 4 samples: 0.5, 1.3, 3 2, and 3 g/cm2 Areal Density (g/cm2) • 4 to 5 Samples planned for each material (0.5 g/cm2 – 3 g/cm2) • Build experimental dose depth curves for proton belt and electron belt regions • Compare to trapped belt models Conclusion • RF plasma spray coatings enable new forms of Z-grading. • The GTO trapped proton and electron belt environments offer the opportunity to test radiation shielding materials in more than one environment. • Z-grading is not limited to electron dominant environments. Zgrading will be increasingly important with benchmarking the state of the art in passive radiation shielding. Collaborators • Shields-1: Mr. Victor Stewart (LaRC), Mr. Mark Jones (LaRC), Dr. Bill Seufzer (LaRC), Mr. Stephen Casey (LaRC), Mr. Kevin Vipavetz, (LaRC), Mr. Salvatore Scola (LaRC), Mr. David Way (LaRC). • Materials Research and Development: Mr. Roberto Cano (LaRC), Dr. Brian Jensen (LaRC), Dr. Steven Hales (LaRC), and Mr. Joel Alexa (AMA). • Radiation Physics: Dr. Sheila Thibeault (LaRC). • Modeling: Ms. Suzanne Maddock (Science Systems and Applications, Inc.), Dr. Francis Badavi (Christopher Newport University), and Dr. Martha Clowdsley (LaRC). • Scanning Electron Microscopy: Mr. James Baughman (AMA). • Density Measurements: Ms. Helen Herring (AMA). Acknowledgements • • • • • • Dr. Henry Garrett, JPL Dr. Insoo Jun, JPL Dr. Cheryl Marshall, GSFC Dr. Robert Bryant, LaRC Dr. Steven Walker, Old Dominion University Mr. Adam Goff, Luna Innovations
© Copyright 2026 Paperzz