1 Table 1: Standard enthalpy change and Gibbs energy change for

Table 1: Standard enthalpy change and Gibbs energy change for the selected CO2 reaction
pathways. ................................................................................................................................... 2
Table 2: Energy auditing using block analysis method for Cases A and B. ............................. 3
Table 3: Energy auditing using block analysis method for Cases C and D. ............................. 4
Table 4: Energy auditing using block analysis method for Case E. ......................................... 5
Table 5: Economic evaluation using block analysis method for Cases A and B. ..................... 6
Table 6: Economic evaluation using block analysis method for Cases C and D. ..................... 7
Table 7: Economic evaluation using block analysis method for Case E. ................................. 8
Table 8: Summary results of ETII, energy and cost evaluations for Cases A to E. .................. 9
Table B.1: Standard heat of formation and standard Gibbs energy of formation for various
components. (Atkins and Paula, 2005) .................................................................................... 10
Table C.1: Economic parameters for evaluating capital cost, operating costs and value of
products. ................................................................................................................................... 11
1
Table 1: Standard enthalpy change and Gibbs energy change for the selected CO2 reaction pathways.
Reaction
CO2 (g) + 4H2 (g) → CH4 (g) + 2H2O (l)
CO2 (g) + 3H2 (g) → CH3OH (l) + H2O (l)
CO2 (g) + H2 (g) → HCOOH (l)
CO2 (g) + CH4 (g) → 2CO (g) + 2H2 (g)
H R (kJ/mol)
G R (kJ/mol)
Equation
−253.0
−131.0
−31.2
+247.3
−130.6
−9.0
+33.0
+170.7
(1)
(2)
(3)
(4)
2
Table 2: Energy auditing using block analysis method for Cases A and B.
Case
Block
Energy Requirement (MW)
1. Steam requirement for WGS
2. Oxygen production (ASU)
3. Steam requirement in CO2 capture system (Rectisol)
4. Electricity requirement in CO2 capture system (Rectisol)
5. CO2 compressor
6. Steam requirement for heating CO2 feed into methanator
7. Air and syngas compressor
Sub-total
Energy Generation (MW)
1. Gasification and syngas cooler
2. Syngas expander
3. CO2 expander
4. Gas turbine
5. HRSG
6. METHANOL and ACEREACT
Sub-total
Net Energy
I
Case A
II+III
IV
2.42
14.83
I
Case B
II+III
IV
2.42
14.83
9.40
4.98
2.52
9.40
4.98
7.63
17.25
16.90
9.89
9.89
846.77
11.75
17.25
22.01
9.89
9.89
846.77
11.75
0.75
858.52
0.00
2.64
3.31
49.24
55.19
841.27
−16.90
45.30
858.52
0.75
2.64
3.31
49.24
55.19
841.27
−21.26
45.30
3
Table 3: Energy auditing using block analysis method for Cases C and D.
Case
Block
Energy Requirement (MW)
1. Steam requirement for WGS
2. Oxygen production (ASU)
3. Steam requirement in CO2 capture system (Rectisol)
4. Electricity requirement in CO2 capture system (Rectisol)
5. CO2 compressor
6. Energy required for tri-reforming process
7. Air compressor / syngas compressor
8. Energy for heating feed into GTCOMB.
Sub-total
Energy Generation (MW)
1. Gasification and syngas cooler
2. Syngas expander
3. Methanol gas expander
4. METHANOL
5. Gas turbine
6. HRSG
Sub-total
Net Energy
I
Case C
II+III
IV
16.48
14.83
I
Case D
III
IV
27.50
14.83
8.96
23.55
10.44
5.53
7.67
31.31
23.64
42.88
14.23
57.11
864.61
11.56
917.12
346.87
42.33
1272.95
9.25
24.25
57.05
864.61
11.56
60.71
441.00
876.17
0.00
85.66
105.54
191.2
844.86
−23.64
134.09
876.17
501.71
45.4
83.1
128.5
833.84
−771.24
71.45
4
Table 4: Energy auditing using block analysis method for Case E.
Case
Block
Energy Requirement (MW)
1. Oxygen production (ASU)
2. Steam requirement for oxidiser
3. Air compressor
4. Heat duty for heating Fe2O3 (make-up and recycle)
5. Endothermic heat of reducer
6. Heat duty for heating Fe3O4
Sub-total
Energy Generation (MW)
1. Gasification and syngas cooler
2. Syngas expander
3. CO2 cooling
4. H2 cooling
5. Exothermic heat of oxidiser
6. Exothermic heat of combustor
7. Air cooler
Sub-total
Net Energy
Case E
I
II+III
14.83
14.83
74.23
9.78
56.37
26.01
44.61
211.0
846.77
10.02
856.79
141.85
10.57
71.23
12.61
70.41
306.67
841.96
95.67
5
Table 5: Economic evaluation using block analysis method for Cases A and B.
Case
Block
Capital Cost (million Euro)
1. GASIFIER
2. WGS
3. SYNGCOOL
4. ASU
5. Expander
6. Rectisol
7. CO2 transport and storage
8. Compressor
9. Methanator
10. Gas turbine
11. HRSG
12. Methanol reactor
13. Acetic acid reactor
14. H2/CO separation
Sub-total (million Euro)
Annualised capital cost (million Euro/year)
Operating Cost (million Euro/year)
1. Coal
2. Hydrogen
Sub-total (million Euro/year)
Value of Products (million Euro/year)
1. Electricity
2. Methanol
3. Acetic acid
4. Hydrogen
5. Methane
Sub-total (million Euro/year)
Economic Value (million Euro/year) [value of product – (capital cost + operating cost)]
Total Plant Investment (million Euro/year) [(capital cost + operating cost)]
I
Case A
II+III
IV
73.4
9.2
33.0
40.3
3.3
I
73.4
9.2
33.0
40.3
3.3
61.0
4.5
2.4
Case B
II+III
IV
0.5
61.0
6.0
6.0
19.8
159.2
17.5
67.9
7.5
2.2
0.5
7.3
14.6
13.2
43.7
4.8
53.4
53.4
159.2
17.5
81.3
8.9
2.2
0.5
7.3
14.6
13.2
43.7
4.8
164.1
164.1
0.0
53.4
0.0
0.0
53.4
1.5
72.8
107.0
20.0
0.0
−70.9
70.9
0.0
−7.5
7.5
201.3
196.5
4.8
1.5
72.8
107.0
20.0
0.0
−70.9
70.9
71.1
71.1
−101.9
173.0
201.3
196.5
4.8
6
Table 6: Economic evaluation using block analysis method for Cases C and D.
Case
Block
Capital Cost (million Euro)
1. GASIFIER
2. WGS
3. SYNGCOOL
4. ASU
5. Expander
6. Rectisol
7. CO2 transport and storage
8. Compressor
9. Tri-reformer
10. Gas turbine
11. HRSG
12. Methanol reactor
13. PSA
Sub-total (million Euro)
Annualised capital cost (million Euro/year)
Operating Cost (million Euro/year)
1. Coal
2. Natural gas
Sub-total (million Euro/year)
Value of Products (million Euro/year)
1. Electricity
2. Methanol
Sub-total (million Euro/year)
Economic Value (million Euro/year) [value of product – (capital cost + operating cost)]
Total Plant Investment (million Euro/year) [(capital cost + operating cost)]
I
Case C
II+III
IV
73.4
18.4
37.1
40.3
3.3
77.1
6.4
5.0
I
Case D
III
73.4
9.2
37.1
40.3
3.3
31.3
10.1
50.8
64.8
43.4
5.7
16.0
29.8
15.3
IV
18.5
12.0
31.8
172.5
19.0
88.5
9.8
61.1
6.7
53.4
53.4
163.3
18.0
181.4
20.0
44.7
131.7
14.5
383.0
383.0
46.3
46.3
53.4
0.0
0.0
53.4
48.2
0.0
−72.4
72.4
0.0
−9.8
9.8
48.2
41.5
6.7
25.5
0.0
−71.4
71.4
1246.7
1246.7
843.7
403.0
25.5
−35.3
60.8
7
Table 7: Economic evaluation using block analysis method for Case E.
Case
Block
Capital Cost (million Euro)
1. GASIFIER
2. SYNGCOOL
3. ASU
4. Expander
5. Chemical looping system
6. CO2 transport and storage
7. Compressor
Sub-total (million Euro)
Annualised capital cost (million Euro/year)
149.7
16.5
70.6
8.3
5.9
84.8
9.4
Operating Cost (million Euro/year)
1. Coal
Sub-total (million Euro/year)
53.4
53.4
0.0
0.0
−69.9
69.9
91.4
91.4
82.0
9.4
Value of Products (million Euro/year)
1. Hydrogen
Sub-total (million Euro/year)
Economic Value (million Euro/year) [value of product – (capital cost + operating cost)]
Total Plant Investment (million Euro/year) [(capital cost + operating cost)]
Case E
I
II+III
73.4
33.0
40.3
3.0
8
Table 8: Summary results of ETII, energy and cost evaluations for Cases A to E.
Case
A
ETII
Block I
Coal (MW)
0.47
B
Polygeneration
with
methanation
11.19
648.1
648.1
648.1
648.1
648.1
Net energy from process units (MW)
Overall Net Energy (MW/MW coal)
841.3
1.30
841.3
1.30
844.9
1.30
833.8
1.29
842.0
1.30
Total Plant Investment (million Euro/year)
Total Plant Investment (Euro/MWh coal)
Block II+III+IV
Syngas LHV (MW)
Additional feed LHV (MW)
Product LHV (MW)
70.9
13.7
70.9
13.7
72.4
14.0
71.4
13.8
69.9
13.5
412.6
0.0
330.8
412.6
619.8
749.1
405.7
0.0
0.0
400.9
2802.6
2852.8
424.7
0.0
345.4
Net energy from process units (MW)
Net energy from streams (product – additional feed) (MW)
Overall Net Energy (MW/MW syngas)
28.4
330.8
0.87
24.0
129.3
0.37
110.4
0.0
0.27
−699.8
50.2
−1.62
95.7
345.4
1.04
Total Plant Investment (million Euro/year)
Total Plant Investment (Euro/MWh syngas)
12.3
3.7
177.9
53.9
16.5
5.1
463.8
144.6
9.4
2.8
Polygeneration
with CCS
C
Chemical
Looping
0.58
D
Polygeneration
with trireforming
8.74
Cogeneration
with CCS
E
0.38
9
Table B.1: Standard heat of formation and standard Gibbs energy of formation for various components. (Atkins and Paula, 2005)
Component
CO2 (g)
H2 (g)
CH3OH (l)
H2O (l)
CH4 (g)
HCOOH (l)
CO (g)
Standard heat of formation at 298.15 K,
H f (kJ/mol)
−393.51
0
−238.66
−285.83
−74.81
−424.72
−110.53
Standard Gibbs energy of formation at 298.15 K,
G f (kJ/mol)
−394.36
0
−166.27
−237.13
−50.72
−361.35
−137.17
10
Table C.1: Economic parameters for evaluating capital cost, operating costs and value of products.
Capital cost
No.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
Process unit
Gasifier (GE type) a
Water-gas shift reactor a
Rectisol b, i
CO2 transport and storage c
Methanol reactor b
Acetic acid reactor d
H2/CO separation b, ii
Gas turbine a
HRSG a
SYNGCOOL a
ASU a
Compressor a
Expander a
Tri-reformer/ Methanator b, iii
Base Cost
Scale
(million USD)
factor
62.92
0.67
12.24
0.67
54.1
0.7
5.6 Euro/t CO2
7
0.6
2 times of (5)
28
0.7
56
0.75
41.2
1
25.4
0.6
35.6
0.5
4.83
0.67
2.41
0.67
9.4
0.6
Operating cost
No.
Raw material
1
Natural Gas e
2
Coal e
3
Hydrogen f
Base
scale
716
1377
9909
MW coal input
MW LHV coal input
kmol CO2/h
87.5
t MeOH/h
9600
266
355
77
76.6
10
10
1390
kmol/h feed
MW
MW heat duty
MW heat duty
t O2/h
MW
MW
kmol/h feed
Scale unit
Cost Estimation
18 Euro/MWh
2.86 Euro/GJ
1104 Euro/t
Market price
No.
Product
Price
1
Electricity e
70.29 Euro/MWh
2
Methanol g
305 Euro/t
3
Acetic acid h
550 Euro/t
4
Hydrogen f
1104 Euro/t
5
Methane e
18 Euro/MWh
Note:
a
Larson et al., 2005. Economic parameters taken from year 2003. Assume 1USD = 0.9 Euro (2003).
b
Hamelinck and Faaij, 2002. Economic parameters taken from year 2001. Assume 1 USD = 1.1 Euro (2001).
c
IPCC, 2005. Cost of CO2 transport: 0-5 USD/t CO2; Cost of CO2 storage: 0.6-8.3 USD/t CO2. Average
values of CO2 transport and storage are taken. Assume 1 USD = 0.8 Euro (2010).
d
Cost of acetic acid reactor is estimated based on 2 times of the cost of methanol reactor, as suggested by Zhu
and Jones, 2009.
e
DECC, 2010.
f
Stigel and Ramezan, 2006.
g
Methanex, 2011. Contract price valid from April to June 2011.
h
ICIS pricing, 2010.
i
Cost of Rectisol is assumed to be 2 times of Selexol, as suggested by Denton, 2003.
Cost of H2/CO separation unit is estimated based on the cost of PSA.
iii
Costs of tri-reformer and methanator are assumed to be the same as the cost of steam reformer.
ii
CEPCI
2001= 394.3; 2003=402.0; 2010 (November)=556.8
11