Divide 6x4 + 2x3 – 6x2 – 14x – 1 by 3x + 1 using long division. Show all your work. Then explain if 3x + 1 is a factor of the dividend. Solution: 3x + 1 6x 4 + 2x 3 − 6x 2 − 14x − 1 Divide 6x4 by 3x to get 2x3 Write 2x3 above the division sign. Multiply 2x3 by 3x + 1 to get 6x4 + 2x3. Write this result under the polynomial under the division sign, like this: 2x 3 3x + 1 6x 4 + 2x 3 − 6x 2 − 14x − 1 6x 4 + 2x 3 Subtract 6x4 + 2x3 from 6x4 + 2x3, and write the result (0) beneath the bar at the bottom. Then bring the -6x2 and -14x terms down, like this: 2x 3 3x + 1 6x 4 + 2x 3 − 6x 2 − 14x − 1 6x 4 + 2x 3 0 − 6x 2 − 14x Divide -6x2 by 3x to get -2x. Write this to the right of the 2x3 above the division bar: 2x 3 − 2x 3x + 1 6x 4 + 2x 3 − 6x 2 − 14x − 1 6x 4 + 2x 3 0 − 6x 2 − 14x Multiply 3x + 1 by -2x to get -6x2 – 2x and write this result beneath the bottom line: 2x 3 − 2x 3x + 1 6x 4 + 2x 3 − 6x 2 − 14x − 1 6x 4 + 2x 3 0 − 6x 2 − 14x − 6x 2 − 2x Subtract -6x2 – 2x from -6x2 – 14x to get -12x. Write this below the bottom line and bring the -1 term down as well: 2x 3 − 2x 3x + 1 6x 4 + 2x 3 − 6x 2 − 14x − 1 6x 4 + 2x 3 0 − 6x 2 − 14x − 6x 2 − 2x − 12x − 1 Finally, divide -12x by 3x to get -4 Write this above the division sign, to the right of the -2x term: 2x 3 − 2x − 4 3x + 1 6x 4 + 2x 3 − 6x 2 − 14x − 1 6x 4 + 2x 3 0 − 6x 2 − 14x − 6x 2 − 2x − 12x − 1 Multiply 3x + 1 by -4 to get -12x – 4. Write this below the bottom line, and subtract: 2x 3 − 2x − 4 3x + 1 6x 4 + 2x 3 − 6x 2 − 14x − 1 6x 4 + 2x 3 0 − 6x 2 − 14x − 6x 2 − 2x − 12x − 1 −12x − 4 3 The “3” in the last line indicates that there is a remainder. The solution is 2x 3 − 2x − 4 + 3 3x + 1 Since there is a remainder, 3x + 1 is not a factor of 6x4 + 2x3 – 6x2 – 14x – 1.
© Copyright 2026 Paperzz