Problems

1. The top view of a revolving entrance door is shown. Two persons simultaneously
approach the door and exert force of equal magnitudes as shown. If the resulting
moment about the door pivot axis at O is 25 N.m, determine the force magnitude F.
2. Express and identify the resultant of the two forces and one couple
shown acting on the shaft angled in the x-z plane.
300 N
18 cm
400 N.m
300 N
3. Determine the distance d between points A and B so that the resultant
couple moment has a magnitude of CR= 20 Nm.
CR= 20 Nm
π‘Ÿπ΅/𝐴
 

C1 ο€½ rC / A ο‚΄ F1







C1 ο€½ 0.25i ο€­ d cos 30 j  d sin 30k ο‚΄  50i 
π‘ŸπΆ/𝐴



C1 ο€½ ο€­50d cos 30k ο€­ 25dj

 


 



C2 ο€½ rB / A ο‚΄ F2 οƒž
C2 ο€½ ο€­ d cos 30 j  d sin 30k ο‚΄ 35k


C2 ο€½ ο€­35d cos 30i


 


Resultant Couple: C R ο€½ C1  C2 ο€½ ο€­50d cos 30k ο€­ 25dj ο€­ 35d cos 30i
CR ο€½
50d cos 302  25d 2  35d cos 302
d ο€½ 0.342 m
ο€½ 20
4. Three couples are formed by the three pairs of equal and opposite
forces. Determine the resultant CR of the three couples.

C1






 
C1 ο€½ r1 ο‚΄ F1 ο€½ 0.2 j  ο€­ 100k ο€½ ο€­20i

C3

 
C 2 ο€½ r2 ο‚΄ F2




C 2 ο€½  0.3 j   120 cos 45i  120 sin 45 j 


C 2 ο€½ ο€­25.46k

C2

C3
20o
80 N
C3
80 N
20o
30o
20o
z
y
C 3 ο€½ 80 οƒ— 0.18 cos 20  ο€½ 13.53 N οƒ— m



C 3 ο€½ 13.53 ο€­ cos 30k ο€­ sin 30 j



C 3 ο€½ ο€­6.765 j ο€­ 11.71k






CR ο€½ οƒ₯ C ο€½ ο€­20i ο€­ 6.765 j ο€­ 37.17k

5. Determine the couple acting on surface ABC in vector form.
z
C (0, 0, 4)
π‘ͺ
y
O
A (3, 0, 0)
x
B (3, 6, 0)
6. Three couples are formed by the three pairs of equal and opposite forces.
Determine the resultant of the three couples.