Intro Overview Income Changes Own-Price Changes Cross-Price Changes Inverse Demand Σ Econ 401 Price Theory Chapter 6: Demand Instructor: Hiroki Watanabe Summer 2009 1 / 57 Intro Overview 1 2 3 4 5 6 7 Income Changes Own-Price Changes Cross-Price Changes Inverse Demand Introduction Overview Comparative Statics Endogenous & Exogenous Variables Overview Marshalian Demand Function Review The Nature of Commodities & Graphical Representation Income Changes Normal & Income-Inferior Goods Income Expansion Path Example 1: Cobb-Douglas Example 2: Quasi-Linear Preferences Example 3: Perfect Substitutes Example 4: Perfect Compliments Own-Price Changes Law of Demand & Giffen Good Price Offer Curve & Demand Curve Example 1: Perfect Compliments Example 2: Perfect Substitutes Example 3: Cobb-Douglas Cross-Price Changes Inverse Demand Summary 2 / 57 Σ Intro Overview Income Changes Own-Price Changes Cross-Price Changes Inverse Demand Σ Overview Chpt 6: Categories and definitions. Chpt 8: Price change → demand. Chpt 14: Price change → welfare. 3 / 57 Intro Overview Income Changes Own-Price Changes Cross-Price Changes Inverse Demand Comparative Statics Discussion: Situational Change & Consumer’s Reaction marketplace.publicradio.org/display/web/ 2008/06/09/charities/ With the tools we have learned so far, propose a way to measure or predict "a big dent in volunteerism" triggered by the increasing gas price. 4 / 57 Σ Intro Overview Income Changes Own-Price Changes Cross-Price Changes Inverse Demand Σ Comparative Statics It is necessary (and critical) to observe the change in demand x∗ (endogenous) caused by given parameters p and m (exogenous). Comparative Statics Comparative statics analysis compares the values of endogenous variables at the differenct values of the exogenous variable while other parameters held constant. ceteris paribus. Why can’t we move multiple parameters at the same time like in the real world? Prediction becomes less clear-cut (and confusing): ∗ : 3 & 2. pC : 2 % 5 ceteris paribus ⇒ xC ∗ : 3 → indefinite. pC : 2 % 5 while pT : 1 % 3 ⇒ xC 1 2 5 / 57 Intro Overview Income Changes Own-Price Changes Cross-Price Changes Inverse Demand Endogenous & Exogenous Variables Endogenous & exogenous variables: Given , p and m, UMP predicts which x∗ Greg will choose. UMP does not predict the movement of p, m and change in tastes . () p UMP ∗ m 6 / 57 Σ Intro Overview 1 2 3 4 5 6 7 Income Changes Own-Price Changes Cross-Price Changes Inverse Demand Σ Introduction Overview Comparative Statics Endogenous & Exogenous Variables Overview Marshalian Demand Function Review The Nature of Commodities & Graphical Representation Income Changes Normal & Income-Inferior Goods Income Expansion Path Example 1: Cobb-Douglas Example 2: Quasi-Linear Preferences Example 3: Perfect Substitutes Example 4: Perfect Compliments Own-Price Changes Law of Demand & Giffen Good Price Offer Curve & Demand Curve Example 1: Perfect Compliments Example 2: Perfect Substitutes Example 3: Cobb-Douglas Cross-Price Changes Inverse Demand Summary 7 / 57 Intro Overview Income Changes Own-Price Changes Cross-Price Changes Inverse Demand Marshalian Demand Function Marshalian Demand Function Marshalian demand function returns the optimal bundle at each given price and income, denoted by ϕ(p1 , p2 , m) = ϕ1 (p1 , p2 , m), ϕ2 (p1 , p2 , m) . () ∗ = ϕ1 (p, m) 1 p ϕ(p, m) ∗ = ϕ2 (p, m) 2 m 8 / 57 Σ Intro Overview Income Changes Own-Price Changes Cross-Price Changes Inverse Demand Σ Review Change in Parameters Change in price causes rotation to the budget constraint. Change in income causes parallel shifts to the budget constraint. 9 / 57 Intro Overview Income Changes Own-Price Changes Cross-Price Changes Inverse Demand The Nature of Commodities & Graphical Representation Lots of definitions to learn today to describe and classify different types of commodities. 10 / 57 Σ Intro Overview Income Changes Own-Price Changes Cross-Price Changes Inverse Demand Σ The Nature of Commodities & Graphical Representation ↑ ϕ1 (p, m) ↓ ϕ1 (p, m) ↑m normal income-inferior ↓ p1 LOD Giffen ↑ p2 substitute complement 11 / 57 Intro Overview Income Changes Own-Price Changes Cross-Price Changes Inverse Demand The Nature of Commodities & Graphical Representation on x1 − x2 on x1 − parameter m income expansion path Engel curve p1 price offer curve demand curve 12 / 57 Σ Intro Overview 1 2 3 4 5 6 7 Income Changes Own-Price Changes Cross-Price Changes Inverse Demand Σ Introduction Overview Comparative Statics Endogenous & Exogenous Variables Overview Marshalian Demand Function Review The Nature of Commodities & Graphical Representation Income Changes Normal & Income-Inferior Goods Income Expansion Path Example 1: Cobb-Douglas Example 2: Quasi-Linear Preferences Example 3: Perfect Substitutes Example 4: Perfect Compliments Own-Price Changes Law of Demand & Giffen Good Price Offer Curve & Demand Curve Example 1: Perfect Compliments Example 2: Perfect Substitutes Example 3: Cobb-Douglas Cross-Price Changes Inverse Demand Summary 13 / 57 Intro Overview Income Changes Own-Price Changes Cross-Price Changes Inverse Demand Normal & Income-Inferior Goods Normal & income-inferior Goods A commodity is called a normal good if increase in income leads to increase in consumption while other things being equal. Otherwise, a commodity is income-inferior. Does an income-inferior good really exist? 14 / 57 Σ Intro Overview Income Changes Own-Price Changes Cross-Price Changes Inverse Demand Σ Normal & Income-Inferior Goods 15 / 57 Intro Overview Income Changes Normal & Income-Inferior Goods Own-Price Changes Cross-Price Changes Inverse Demand Figure: Mass-produced cheesecakes (2 days past the expiration date) & fresh home-made cheesecakes 16 / 57 Σ Intro Overview Income Changes Own-Price Changes Cross-Price Changes Inverse Demand Σ Income Expansion Path Income Expansion Path Income expansion path represents the collection of optimal bundles on x1 − x2 plane under varying income levels while p = (p1 , p2 ) is held constant. Engel Curve A plot of quantity demanded agains income, with fixed p = (p1 , p2 ) is called an Engel curve 17 / 57 Intro Overview Income Changes Own-Price Changes Cross-Price Changes Inverse Demand Income Expansion Path 18 / 57 Σ Intro Overview Income Changes Own-Price Changes Cross-Price Changes Inverse Demand Σ Example 1: Cobb-Douglas Cobb-Douglas Utility Function maxxC ,xT u(xC , xT ) = xC xT2 MRT at (xC , xT ) is s.t. xC + xT = m. −xC . 2xT 19 / 57 Intro Overview Income Changes Own-Price Changes Cross-Price Changes Inverse Demand Example 1: Cobb-Douglas 2m ϕ(m, p = (1, 1)) = ϕ1 (m, p), ϕ2 (m, p) = m , . 3 3 Engel curve for cheesecakes at p = (1, 1): m = 3xC∗ . 20 / 57 Σ Intro Overview Income Changes Own-Price Changes Cross-Price Changes Inverse Demand Σ Example 1: Cobb-Douglas Income Expansion Path 10 indifference curves m=3 m=6 m=9 9 8 7 xT 6 5 4 3 2 1 0 0 1 2 3 4 5 xC 6 7 8 9 10 21 / 57 Intro Overview Income Changes Own-Price Changes Cross-Price Changes Inverse Demand Example 1: Cobb-Douglas Engel Curve 30 27 24 21 m 18 15 12 9 6 3 0 0 1 2 3 4 5 xC 6 7 8 9 10 22 / 57 Σ Intro Overview Income Changes Own-Price Changes Cross-Price Changes Inverse Demand Σ Example 2: Quasi-Linear Preferences Consider a bundle of coins xC and tea xT . Quasi-Linear Preferences p maxxC ,xT u(xC , xT ) = xC + xT s.t. xC + .5xT = m. p MRS at (xC , xT ) is −2 xT . ϕ(m, p = (1, .5)) = (m − 1, 2). Recall MRS is same at each xT regardless of the amount of xC . 23 / 57 Intro Overview Income Changes Own-Price Changes Cross-Price Changes Inverse Demand Example 2: Quasi-Linear Preferences Income Expansion Path 10 indifference curves m=2 m=4 m=6 9 8 7 xT 6 5 4 3 2 1 0 0 1 2 3 xC 4 5 6 24 / 57 Σ Intro Overview Income Changes Own-Price Changes Cross-Price Changes Inverse Demand Σ Example 2: Quasi-Linear Preferences Engel Curve for Coins 7 6 5 m 4 3 2 1 0 0 1 2 3 xC 4 5 6 25 / 57 Intro Overview Income Changes Own-Price Changes Cross-Price Changes Inverse Demand Example 2: Quasi-Linear Preferences Engel Curve for Tea 6 5 m 4 3 2 1 0 0 1 2 3 xT 4 5 6 26 / 57 Σ Intro Overview Income Changes Own-Price Changes Cross-Price Changes Inverse Demand Σ Example 3: Perfect Substitutes Consider a bundle of six-packs and bottles of Corona (x6 , x1 ). Suppose p = (p6 , p1 ) = (10, 2). MRS is −6 while the relative price is −5. 27 / 57 Intro Overview Income Changes Own-Price Changes Cross-Price Changes Inverse Demand Example 3: Perfect Substitutes Income Expansion Path 48 40 x1 52 44 36 32 28 24 16 20 12 12 indifference curves m=20 m=40 m=60 48 40 20 18 56 44 36 32 28 24 24 36 32 28 24 16 6 40 20 12 4 5 36 3 x6 32 2 28 1 24 8 16 4 0 0 6 28 / 57 Σ Intro Overview Income Changes Own-Price Changes Cross-Price Changes Inverse Demand Σ Example 3: Perfect Substitutes Engel Curve for Six−Packs 30 m 20 10 0 0 1 2 3 x6 29 / 57 Intro Overview Income Changes Own-Price Changes Cross-Price Changes Inverse Demand Example 3: Perfect Substitutes Engel Curve for Bottles 6 5 m 4 3 2 1 0 0 1 2 3 x1 4 5 6 30 / 57 Σ Intro Overview Income Changes Own-Price Changes Cross-Price Changes Inverse Demand Σ Example 4: Perfect Compliments Discussion Consider a bundle (cereal, milk)= (xC , xM ). Greg says he can’t have cereals without milk and the only time he has milk is when he eats his cereals. Greg’s preferred cereal-milk ratio is 1 to 1. (pC , pM ) = (2, 2). What do Greg’s Engel curves look like? (curve? flat?) Consider m = 4 and m = 8 for example. 31 / 57 Intro Overview Income Changes Own-Price Changes Cross-Price Changes Inverse Demand Example 4: Perfect Compliments Income Expansion Path 6 5 3 2 1 indifference curves m=4 m=8 5 4 2 2 1 0 0 x 3 3 2 3 4 1 M 4 1 1 2 1 2 3 xC 1 4 5 6 32 / 57 Σ Intro Overview Income Changes Own-Price Changes Cross-Price Changes Inverse Demand Σ Example 4: Perfect Compliments Engel Curve for Cereal 24 20 m 16 12 8 4 0 0 1 2 3 xC 4 5 6 33 / 57 Intro Overview 1 2 3 4 5 6 7 Income Changes Own-Price Changes Cross-Price Changes Inverse Demand Introduction Overview Comparative Statics Endogenous & Exogenous Variables Overview Marshalian Demand Function Review The Nature of Commodities & Graphical Representation Income Changes Normal & Income-Inferior Goods Income Expansion Path Example 1: Cobb-Douglas Example 2: Quasi-Linear Preferences Example 3: Perfect Substitutes Example 4: Perfect Compliments Own-Price Changes Law of Demand & Giffen Good Price Offer Curve & Demand Curve Example 1: Perfect Compliments Example 2: Perfect Substitutes Example 3: Cobb-Douglas Cross-Price Changes Inverse Demand Summary 34 / 57 Σ Intro Overview Income Changes Own-Price Changes Cross-Price Changes Inverse Demand Σ Law of Demand & Giffen Good Law of Demand & Giffen Good A commodity is said to satisfy the law of demand if the price increase leads to reduction in quantity demanded. Otherwise, the commodity is called a Giffen good. Examples of Giffen goods? Prada shoes: If they’re cheap and everyone’s wearing them, then ... 35 / 57 Intro Overview Income Changes Own-Price Changes Cross-Price Changes Inverse Demand Law of Demand & Giffen Good 36 / 57 Σ Intro Overview Income Changes Own-Price Changes Cross-Price Changes Inverse Demand Σ Law of Demand & Giffen Good 37 / 57 Intro Overview Income Changes Own-Price Changes Figure: Cross-Price Changes Inverse Demand Price Offer Curve & Demand Curve Price Offer Curve The curve containing all the utility-maximizing bundles traced out as p1 changes, with p2 and m constant, is the p1 -price offer curve. Marshalian Demand Curve The plot of the x1 -coordinate of the p1 -price offer curve against p1 is the Marshalian demand curve for commodity 1. 38 / 57 Σ Intro Overview Income Changes Own-Price Changes Cross-Price Changes Inverse Demand Σ Price Offer Curve & Demand Curve 39 / 57 Intro Overview Income Changes Own-Price Changes Figure: Cross-Price Changes Inverse Demand Price Offer Curve & Demand Curve 40 / 57 Σ Intro Overview Income Changes Own-Price Changes Cross-Price Changes Inverse Demand Σ Example 1: Perfect Compliments Perfect complements (x1 , x2 ) with (p1 , p2 ) = (1, 1) 41 / 57 Intro Overview Income Changes Own-Price Changes Cross-Price Changes Inverse Demand Example 1: Perfect Compliments 42 / 57 Σ Intro Overview Income Changes Own-Price Changes Cross-Price Changes Inverse Demand Σ Example 2: Perfect Substitutes Consider Coke and Pepsi. 43 / 57 Intro Overview Income Changes Own-Price Changes Cross-Price Changes Inverse Demand Example 2: Perfect Substitutes 44 / 57 Σ Intro Overview Income Changes Own-Price Changes Cross-Price Changes Inverse Demand Σ Example 3: Cobb-Douglas Now consider cheesecakes and tea (xC , xT ): Cobb-Douglas Utility Function maxxC ,xT u(xC , xT ) = xC xT MRS at (xC , xT ) is s.t. xC + 2xT = m. −xC . x1 45 / 57 Intro Overview Income Changes Own-Price Changes Cross-Price Changes Inverse Demand Example 3: Cobb-Douglas pC−Price Offer Curve 75 50 10 C 5 0 10 8 0 p =2 C 25 7 12 5 75 50 6 xM 17 indifference curves 5 p =1 15 12 9 10 0 5 75 4 50 25 3 50 2 25 25 1 0 0 2 4 6 8 10 xC 12 14 16 18 20 46 / 57 Σ Intro Overview Income Changes Own-Price Changes Cross-Price Changes Inverse Demand Σ Example 3: Cobb-Douglas Marshalian Demand Curve for Cheesecakes 10 C 9 φ (m=20, pC, pT=2)=20/pC 8 φC (m=10, p , p =2)=10/p C T C 7 pC 6 5 4 3 2 1 0 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 xC 47 / 57 Intro Overview 1 2 3 4 5 6 7 Income Changes Own-Price Changes Cross-Price Changes Inverse Demand Introduction Overview Comparative Statics Endogenous & Exogenous Variables Overview Marshalian Demand Function Review The Nature of Commodities & Graphical Representation Income Changes Normal & Income-Inferior Goods Income Expansion Path Example 1: Cobb-Douglas Example 2: Quasi-Linear Preferences Example 3: Perfect Substitutes Example 4: Perfect Compliments Own-Price Changes Law of Demand & Giffen Good Price Offer Curve & Demand Curve Example 1: Perfect Compliments Example 2: Perfect Substitutes Example 3: Cobb-Douglas Cross-Price Changes Inverse Demand Summary 48 / 57 Σ Intro Overview Income Changes Own-Price Changes Cross-Price Changes Inverse Demand Σ The initial question: how does the increase in the gas price affect Greg’s spending on community services (≈ "purchase" of volunteering work). Substitutes & Compliments 1 A cheesecake is a complement to tea if increase in the price of tea leads to decrease in cheesecake consumption. 2 A cheesecake is a substitute to tea if increase in the price of tea leads to increase in cheesecake consumption. Bottles & six-packs of Corona? Cereal & milk? Cobb-Douglas utility? 49 / 57 Overview Income Changes Own-Price Changes Cross-Price Changes Inverse Demand (cont’d from the previous example) max u(xC , xT ) = xC xT s.t. xC ,xT xC + 2xT = m. ϕT (m = 20, pC , pT = 2) = 10 is independent of the price of cheesecakes. Marshalian Demand Curve for Cheesecakes 10 C 9 φ (m=20, pC, pT=2)=20/pC 8 φC (m=10, p , p =2)=10/p C T C 7 6 pC Intro 5 4 3 2 1 0 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 xC 50 / 57 Σ Intro Overview 1 2 3 4 5 6 7 Income Changes Own-Price Changes Cross-Price Changes Inverse Demand Σ Introduction Overview Comparative Statics Endogenous & Exogenous Variables Overview Marshalian Demand Function Review The Nature of Commodities & Graphical Representation Income Changes Normal & Income-Inferior Goods Income Expansion Path Example 1: Cobb-Douglas Example 2: Quasi-Linear Preferences Example 3: Perfect Substitutes Example 4: Perfect Compliments Own-Price Changes Law of Demand & Giffen Good Price Offer Curve & Demand Curve Example 1: Perfect Compliments Example 2: Perfect Substitutes Example 3: Cobb-Douglas Cross-Price Changes Inverse Demand Summary 51 / 57 Intro Overview Income Changes Own-Price Changes Cross-Price Changes Inverse Demand Inverse Demand Function Inverse demand function D(x1 ) assigns the price at which the amount x1 will be chosen, given p2 and m. 52 / 57 Σ Intro Overview Income Changes Own-Price Changes Cross-Price Changes Inverse Demand Σ ∗ C (pC , pT ) ϕ(pC , pT , m) ∗ T m pC C D(C ) m̄, p¯T 53 / 57 Intro Overview Income Changes Own-Price Changes Cross-Price Changes Inverse Demand So? Normalize p2 = 1. Tangency condition: p1 = MRS(x1∗ , x2∗ ). ⇒ D(x1∗ ) = p1 = MRS(x1∗ , x2∗ ) (=marginal willingness to pay) Inverse demand function denotes the marginal willingness to pay at each x1 given p2 and m. Note the inverse demand function shifts left and right if you change p2 and m. 54 / 57 Σ Intro Overview Income Changes Own-Price Changes Cross-Price Changes Inverse Demand Σ Inverse Demand for Cheesecakes 10 D(xC)=20/xC at m=20 9 D(x )=10/x at m=10 C 8 C 7 pC 6 5 4 3 2 1 0 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 xC 55 / 57 Intro Overview 1 2 3 4 5 6 7 Income Changes Own-Price Changes Cross-Price Changes Inverse Demand Introduction Overview Comparative Statics Endogenous & Exogenous Variables Overview Marshalian Demand Function Review The Nature of Commodities & Graphical Representation Income Changes Normal & Income-Inferior Goods Income Expansion Path Example 1: Cobb-Douglas Example 2: Quasi-Linear Preferences Example 3: Perfect Substitutes Example 4: Perfect Compliments Own-Price Changes Law of Demand & Giffen Good Price Offer Curve & Demand Curve Example 1: Perfect Compliments Example 2: Perfect Substitutes Example 3: Cobb-Douglas Cross-Price Changes Inverse Demand Summary 56 / 57 Σ Intro Overview Income Changes Own-Price Changes Cross-Price Changes Inverse Demand Characterize commodities by changing situational background. Income changes and associated graphs. Own-price changes and associated graphs. Cross-price changes and associated graphs. Meaning of the inverse demand function. 57 / 57 Σ
© Copyright 2026 Paperzz