Ma 227 Homework Solutions Fall 2012 Due 9/7/2012 12.4-pg. 857 #3, 5, 7, 9, 11, 15, 21, 23, 25, 29 3. R The region R is more easily described by the rectangular coordinates: x, y| − 1 ≤ x ≤ 1, 0 ≤ y ≤ 12 x 12 1 1 Thus fx, ydA 2 x 12 fx, ydydx −1 0 R 2 7 4 rdrd represents the area of the region R 5. the lower half of a ring as shown below. r4 -7 -6 -5 -4 -3 -2 -1 0 y 1 2 r, | 4 ≤ r ≤ 7, ≤ ≤ 2 , 3 4 5 6 7 x -2 -4 -6 2 7 2 4 rdrd r2 2 7 4 d 1 49 − 16 33 2 2 D xydA, where D is the disk with center at the origin and radius 3. 7. D can be described as D r, | 0 ≤ r ≤ 3, 0 ≤ ≤ 2 2 3 2 r4 4 2 3 D xydA 0 0 r cos r sin rdrd 0 0 r 3 cos sin drd 0 3 cos sin drd 81 4 0 1 sin 2 2 2 0 0 9. cosx 2 y 2 dA where R is the region that lies above the x-axis within the circle R x2 y2 9 1 D can be described as D 11. e −x 2 −y 2 dA. r, | ≤ r ≤, 0 ≤ ≤ The region of integration is shown below. D 4 − y2 y 2 1 0 0.5 1.0 1.5 2.0 x -1 -2 Switching to polar coordinates we have 2 2 2 e −x −y dA − 0 e −r rdrd − 2 2 2 2 D 2 − − 1 e −r 2 2 2 2 0 d 2 − 1 e −4 − e 0 d − 1 e −4 − e 0 −2 2 2 2 1 − e 4 2 Find the volume under the cone z 15. V 2 2 x 2 y 2 dA x 2 y 2 ≤4 0 0 x 2 y 2 and above the disk x 2 y 2 ≤ 4. 2 2 0 0 r 2 rdrd d r 2 dr 2 0 1 3 r3 2 0 2 8 3 21. The cone z x 2 y 2 intersects the sphere x 2 y 2 z 2 1 when x 2 y 2 x 2 y 2 2 1 or x 2 y 2 12 . So: V 1 2 2 1 − x 2 − y 2 − x 2 y 2 dA x 2 y 2 ≤ 12 1 2 2 d 0 − 13 0 0 0 3 1 − r 2 − rrdrd r 1 − r 2 − r 2 dr 2 − 13 1 − r 2 2 − 0 1 2 −1 3 1 3 r3 1 2 0 2− 2 2 16 3 23. Use polar coordinates to find the volume inside both the cylinder x 2 y 2 4 and the ellipsoid 4x 2 4y 2 z 2 64. SOLUTION The ellipsoid intersects the x, y-plane in the circle x 2 y 2 16. Thus, our region is bounded by the circle x 2 y 2 4. So , in polar coordinates we have the equation r 2. Next, we can solve the equation of the ellipsoid 4x 2 4y 2 z 2 64 for z, i.e., z 2 −x 2 − y 2 16 which can be rewritten in polar coordinates as z 2 16 − r 2 . The volume of the solid can now be written as: 2 2 2 2 16 − r 2 rdrd −64 3 512 3 0 0 25. Use a double integral to find the area of one loop of the rose r cos 3. r cos 3 y 0.8 0.6 0.4 0.2 -0.4 -0.2 -0.2 0.2 0.4 0.6 0.8 1.0 x -0.4 -0.6 -0.8 3 r 0 cos 3 0 or 3 2 or 6 . Thus for the loop in the first and fourth quadrants we have − 6 ≤ ≤ 6 . Using symmetry we get Area 2 6 0 cos 3 0 rdrd 12 29. Evaluate 1 0 y 2−y 2 x ydxdy by converting to polar coordinates. The region of integration is the part of the circle of radius 2 centered at the origin in the first quadrant below the line y x. 2 − y2 y 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0.0 0.0 0.2 4 2 0.4 0.6 0.8 1.0 1.2 1.4 x Thus 1 0 y 2−x 2 x ydydx 0 0 r cos r sin rdrd 2 2 2 2 sin − cos 04 3 3 2 0 r3 3 2 0 cos sin d 2 2 − −01 2 2 2 2 3 12.7-pg. 880 #5, 9, 11, 17, 19 5. 4 3 1 0 0 0 1−z 2 ze y dxdzdy 3 1 3 1 − z 2 2 − 3 0 0 0 1 3 9. 1 − z 2 ze y dzdy 3 1 e y dy 0 3 0 e y dy 1 e 3 − 1 3 Evaluate 2xdV where E x, y, z| 0 ≤ z ≤ y, 0 ≤ y ≤ 2, 0 ≤ x ≤ E 4 − y 2 . E 2xdV 2 0 0 4−y 2 y 2 0 2xdzdxdy 0 0 4−y 2 2 2xydxdy 4 − y 2 ydy 2y 2 − 0 1 4 2 y4 0 4 11. Evaluate 6xydV where E lies under the plane z 1 x y and above the E region in the xy − plane bounded by the curves y x , y 0, and x 1 y 2.0 1.5 1.0 0.5 0.0 0.0 0.5 1.0 1.5 2.0 x Here E x, y, z|0 ≤ x ≤ 1, 0 ≤ y ≤ 1 x 1xy E 6xydV 0 0 0 x , 0 ≤ z ≤ 1 x y, so 1 x 1 x 6xydzdydx 6xyz z1xy dydx 6xyx y 1dydx z0 0 0 0 0 5 1 1 x 3xy 2 3x 2 y 2 2xy 3 y dx 3x 2 3x 3 2x 2 dx x 3 y0 0 0 5 3 4 x4 4 7 7 x2 0 1 65 28 E xdV, where E is bounded by the parabaloid x 4y 2 4z 2 and the plane x 4 17. The projection on the yz − plane is the disk y 2 z 2 ≤ 1. Using polar coordinates y r cos and z r sin we get: 4 E xdV D 4y 2 4z 2 xdx dA 2 1 8 d r − r 5 dr 82 0 0 1 2 1 2 2 1 D 4 2 − 4y 2 4z 2 2 dA 8 0 0 1 − r 4 rdrd r2 − 1 6 r6 1 0 16 3 19. Find the volume of the tetrahedron bounded by the coordinate planes and the plane 2x y z 4. The plane 2x y z 4 intersects the xy-plane in the line y 4 − 2x, 6 y4 3 2 1 0 0 1 2 x So E x, y, z|0 ≤ x ≤ 2, 0 ≤ y ≤ 4 − x, 0 ≤ z ≤ 4 − 2x − y 2 4−2x 4−2x−y V dzdydx 16 3 0 0 0 7
© Copyright 2026 Paperzz