Page 1 of 3 Assignment Previewer 7/5/2012 http://www.webassign

Assignment Previewer
Page 1 of 3
Trig Identities (2525968)
Current Score:
Question
0/13
Due:
Sun Jul 8 2012 11:00 AM CDT
1 2 3 4 5 6 7 8 9
0/1 0/1 0/3 0/2 0/2 0/1 0/1 0/1 0/1
Total
0/13
Points
1.
0/1 points
SwokPreCalc12 6.1.027. [1780303]
-
LarTrig7 2.1.021. [976851]
-
Verify the identity.
(sin2 θ + cos2 θ)4 = 1
4
2
2
4
(sin θ + cos θ) =
= 1
2.
0/1 points
Match each trigonometric expression with one of the following. (You will use each answer choice exactly once.)
3.
2
-
a. sin (x)
-
b. sin(x)tan(x)
-
c. tan(x)
-
d. sec (x)
-
e. csc(x)
-
f. sec2(x) + tan2(x)
2
0/3 points
SwokPreCalc12 6.1.002. [1779732]
-
SwokPreCalc12 6.1.003. [1780948]
-
Verify the identity.
sin 3x + cos 3x cot 3x = csc 3x
sin 3x + cos 3x cot 3x = sin 3x + cos 3x ·
sin 3x
2
+ cos 3x
=
sin 3x
1
=
= csc 3x
4.
0/2 points
Verify the identity.
2
sec 3u − 1 = sin2 3u
sec2 3u
http://www.webassign.net/v4cgisfzheng@missouristate/assignments/preview.tpl?r=2012070... 7/5/2012
Assignment Previewer
Page 2 of 3
1
sec2 3u − 1
= 1−
2
sec 3u
= 1−
= sin2 3u
5.
0/2 points
SwokPreCalc12 6.1.051. [1781240]
-
Show that the equation is not an identity. (Hint: Find one number for which the equation is false.)
cos 3t =
2
1 − sin 3t
Consider the following identity.
cos 3t = ±
2
2
cos 3t = 1 − sin 3t
Since the given equation is cos 3t = +
2
1 − sin 3t
2
1 − sin 3t , we may choose any t such that cos 3t < 0.
Using t = π ,
3
LS = cos π = −1,
RS =
2
1 − sin π =
Since −1 ≠
.
,
LS ≠ RS.
6.
0/1 points
LarTrig7 2.1.052. [976643]
-
Factor the expression and use the fundamental identities to simplify. Use a graphing utility to check your result graphically.
7.
0/1 points
LarTrig7 2.1.058. [976483]
-
LarTrig7 2.1.063. [976755]
-
SulPreCalc7 6.3.004. [362834]
-
Perform the indicated operation and use the fundamental identities to simplify.
8.
0/1 points
Perform the indicated operation and use the fundamental identities to simplify.
9.
0/1 points
2
2
tan θ - sec θ =
.
Assignment Details
http://www.webassign.net/v4cgisfzheng@missouristate/assignments/preview.tpl?r=2012070... 7/5/2012