sin−1 x or arcsin x h i sin x: D (sin) = − π2 , π2 , R (sin) = [−1, 1] ³ ´ ³ ´ h sin−1 x: D sin−1 = [−1, 1], R sin−1 = − π2 , π2 i Cancellation equalities ³ ´ sin sin−1 x = x, −1 ≤ x ≤ 1, sin−1 (sin x) = x, − π π ≤x≤ 2 2 How to express trigonometric functions through each other · ¸ q π π x∈ − , , 2 2 cos x ≥ 0, cos x = + 1 − sin2 x sin x sin x =√ cos x 1 − sin2 x sin2 x + cos2 x 1 1 tan2 x + 1 = = , cos x = √ 2 2 cos x cos x 1 + tan2 x tan x sin x = tan x cos x = √ 1 + tan2 x tan x = combinations of direct and inverse functions ³ cos sin −1 ³ r ´ x = ´ tan sin−1 x = MATH115 T2 Winter 04, A.Potapov ³ ´ 1 − sin2 sin−1 x = ³ sin sin−1 x ³ cos sin — 1 — −1 √ 1 − x2 ´ x ´ = √ x 1 − x2 www.math.ualberta.ca/∼apotapov/math115.htm Where do we need this? Substitution x = sin t, dx = cos t dt, Z √ Z 1− x2 dx = 1Z t sin 2t +C = cos t dt = (1 + cos 2t) dt = + 2 2 4 2 1 1 1 1 √ = t + sin t cos t + C = sin−1 x + x 1 − x2 + C. 2 2 2 2 Derivative y = sin−1 x, 0 0 x = sin y 0 q (x) = 1 = (sin y) = cos y y = ³ sin−1 x ´0 =√ 1 − sin2 y y 0 = Z 1 , 1 − x2 √ √ 1 − x2 y 0 dx = sin−1 x + C 2 1−x cos−1 x or arccos x cos x: D (cos) = [0, π], R (cos) = [−1, 1] cos−1 x: D (cos−1 ) = [−1, 1], R (cos−1 ) = [0, π] Cancellation equalities ³ ´ cos cos−1 x = x, cos−1 (cosx) = x, MATH115 T2 Winter 04, A.Potapov — 2 — −1 ≤ x ≤ 1, 0≤x≤π www.math.ualberta.ca/∼apotapov/math115.htm How to express trigonometric functions through each other sin x ≥ 0, cot x = cot2 x + 1 = √ sin x = + 1 − cos2 x x ∈ [0, π] , cos x cos x =√ sin x 1 − cos2 x cos2 x + sin2 x 1 = , 2 sin x sin2 x cos x = cot x sin x = √ sin x = √ 1 1 + cot2 x cot x 1 + cot2 x combinations of direct and inverse functions ³ ´ sin cos−1 x = √ ³ sin−1 x + cos−1 x = ´ cot cos−1 x = √ 1 − x2 , π , 2 cos−1 x = x 1 − x2 π − sin−1 x 2 Derivative ³ cos−1 x ´0 ³ = − sin−1 x ´0 = −√ 1 , 1 − x2 tan−1 x or arctan x ³ ´ tan x: D (tan) = − π2 , π2 , R (tan) = (−∞, ∞) MATH115 T2 Winter 04, A.Potapov — 3 — www.math.ualberta.ca/∼apotapov/math115.htm ³ tan−1 x: D (tan−1 ) = (−∞, ∞), R (tan−1 ) = − π2 , π2 lim tan−1 x = lim tan x = ∞, π− x→∞ x→ 2 π 2 lim tan−1 x = − limπ + tan x = −∞, x→−∞ x→− 2 ´ π 2 Cancellation equalities ³ ´ tan tan−1 x = x, −1 < x < 1, tan−1 (tan x) = x, − π π <x< 2 2 How to express trigonometric functions through each other µ ¶ q π π x∈ − , , 2 2 cos x > 0, sin x = √ tan x , 1 + tan2 x cos x = + 1 − sin2 x cos x = √ 1 1 + tan2 x combinations of direct and inverse functions ³ ´ sin tan−1 x = √ x , 1 + x2 ³ ´ cos tan−1 x = √ 1 . 1 + x2 Derivative y = tan−1 x, (x)0 = 1 = (tan y)0 = ³ −1 tan x ´0 x = tan y ³ ´ 1 1 0 0 2 y = y = 1 + x y0 cos2 y cos2 (tan−1 x) Z 1 , = 1 + x2 dx = tan−1 x + C 1 + x2 Example. Using implicit differentiation, find derivative of y = sec−1 x, x ∈ [1, ∞), y ∈ [0, π2 ) x = sec y = 1/ cos y, cos y = 1/x, MATH115 T2 Winter 04, A.Potapov — 4 — www.math.ualberta.ca/∼apotapov/math115.htm d d x=1= dx dx y0 = √ Ã 1 cos y ! sin y 0 = y = cos2 y cos2 y 1 = q 2 1 − cos y x2 1 − 1 x2 √ 1 − cos2 y 0 y, cos2 y 1 = √ 2 . x x −1 Example. Find lim tan−1 (ex ) x→∞ Denote u = ex , u → ∞ as x → ∞, so lim tan−1 (ex ) = u→∞ lim tan−1 u = x→∞ π . 2 Example. Evaluate integral Z sin−1 x √ dx 1 − x2 √ Substitution u = sin−1 x, du = dx/ 1 − x2 , Z ³ Z sin−1 x sin−1 x 1 2 √ dx = udu = u + C = 2 2 1 − x2 ´2 + C. Example. Evaluate integral Z dx x2 + a2 Substitution u = x/a, x = au, dx = adu, Z Z adu 1 Z du dx = = = x2 + a 2 a2 + a2 u2 a 1 + u2 µ 1 1 x = tan−1 u + C = tan−1 ) + C. a a a MATH115 T2 Winter 04, A.Potapov — 5 — www.math.ualberta.ca/∼apotapov/math115.htm
© Copyright 2025 Paperzz