Lattice Thermal Conductivity for Tin Selenide Dr. HoSung Lee April 25,, 2015 Zhao et al. (2014) – Kanatzidis group Carrete et al. (2014) – CEA – Grenoble, France Carrete et al. (2014) – CEA – Grenoble, France Carrete et al. (2014) – CEA – Grenoble, France Serrano-Sanchez et al. (2015) – Institute of Ciencia of Materials of Madrid, Spain Serrano-Sanchez et al. (2015) – Institute of Ciencia of Materials of Madrid, Spain Serrano-Sanchez et al. (2015) – Institute of Ciencia of Materials of Madrid, Spain Serrano-Sanchez et al. (2015) Serrano-Sanchez et al. (2015) – Institute of Ciencia of Materials of Madrid, Spain Nonparabolic two-band model for p-type SnSe by Dr. HoSung Lee on 7/26/2014 23 J 19 ec 1.6021 10 kB 1.3806 10 C 34 h p 6.6260810 J s 31 me 9.1093910 K 23 o 290 0 kg Maldelung (1983) Thomas (1991) used 90 for Bi2Te3 meff_h0 0.75 me density-of-state effective mass of hole for multiple valleys meff_e 8.5 me density-of-state effective mass of electron for multiple valleys meff_h ( T) meff_h0 ( 300K ) md_h ( T) Nv 0 T Bejenari (2008) used exponent 0.2 for Bi2Te3 and exponent 0.2 for Si by Barber (1967) and exponent of 0.8 for PbTe by Lyden (1964) 0 2 3 meff_h ( T) mI_h ( T) md_h ( T) 3 m kg Nv 2 NA 6.02213710 2 2 4 12 A s 0 8.854 10 md_e Nv 2 3 meff_e Lyden (1964) and Pei et al. (2012) mI_e md_e Chen et al. (2014) Nv 2 m* h 0.75 This work 2 0.75 Nv: multiplicity of valleys m*e SPB model calculation Calculation gm cm M D 0.5 78.96gm 118.71 M (110 M155K 1 y gm gm gm 1 y ) MSe 1 10 y 510 Se SnSe Sn SnSe ad 1.631 3.01 3.247 Sn 10 10 mmm vSn d 3.133 5.339 4.81 5.76 10 Se s 3 3 33 3s33 kB 3M 3cm 3 cm 2 aNA acm Se Sn aa s ( 1 y ) a y v 6 a Se p D Se Sn hSn Sn NA d Se Debye temperature θ =65K by Zhao et al. (2014), θ =215 K for SnSe by He et al. (2013) D 155K gm d Sn 5.76 dSe 4.81 3 cm MSn 118.71gm gm Mass density= mass/volume = molar mass/(NA*a^3), Goldsmid (1964) and Maldelung (1983) 3 cm MSe 78.96gm Atomic (molecular) masses, Periodic table y 0.5 1 MSn aSn NA d Sn 1 3 10 aSn 3.247 10 MSe aSe NA d Se m 3 10 aSe 3.01 10 m 1 a aSn ( 1 y ) aSe y 3 3 3 10 a 3.133 10 m Atomic size, Vining (1991) Atomic size, 2.9x10^-8 cm used by Larson et al. (2000) Mean atomic mass M SnSe M Sn ( 1 y ) M Se y d M SnSe NA a d 5.339 3 gm mass density, d = 8.219 gm/cm^3 by Malelung (1983) 3 cm 1 vs kB hp 2 3 Da 6 5 cm v s 1.631 10 s Speed of sound, Zhao et al. (2014) gives 2.0 x 10^5 cm/s. Electronic Thermal Conductivity kB Le( T n ) ec 2 F e 2 1 T n 2 3 Fe 0 2 1 T n kB Lh ( T n) ec 3 2 F h 2 1 T n 3 2 3 Fh 0 2 1 T n F 1 3 1 T n e 2 3 Fe 0 1 T n 2 2 F 1 3 1 T n h 2 3 Fh 0 1 T n 2 ke( T n ) Le( T n) e( T n) T Lh ( T n ) h ( T n ) T 2 e( T n ) h ( T n ) ( T n ) Lattice Thermal Conductivity s 39 Strain parameter for point defects, Abeles (1963) used 39 for SiGe. M MSn MSe Vo a 3 Mean atomic volume T h ( T n) e( T n) 2 Drabble and Goldsmid (1961) a aSn aSe s y ( 1 y ) 2.1 2 M 2 a s a MSnSe Disorder parameter or mass-fluctuation-scattering parameter Abeles (1963) s 0.096 Gruneisen parameter, Zhao et al. (2014) γ = 2 is often used to describe the anharmonisity effects on the thermal conductivity. 2 The ratio of Normal to Umklapp processes, β = 2 is used for SiGe by Steigmeier and Abeles (1964) 1 5 3 1 20 2 2 3 6 9 T 2 U( xT) NA h p x 2 D 4 1 M 3 SnSe a T1 300K 1 Phonon relaxation time for Umklapp process, Klemens (1958), Steigmeier and Abeles (1964), and Vining (1991) N( xT) U( xT) 11 U x1 T1 10 4 kB T 4 Vo s h x p PD( xT) 3 4 v s 1 md_h ( T) v s Erc ( T) 2 kB T x1 2 3 3.3 10 s 1 Point defects ,Klemens (1955), Vining (1991) and Klemens (1958) 2 Reduced carrier energy 11 PD x1 T1 10 5 4.837 10 s 2 x x 2 1 exp E ( T ) 3 rc 16 Erc ( T) 2 o md_h ( T) vs EP( xT) x ln 4 2 4 h p d Erc ( T) x x 1 exp Erc ( T) 16 E ( T) 2 rc latt ( xT) N( xT) 1 U( xT) 3 kB T klatt ( T) 2 hp 2 v s 1 PD( xT) 1 EP( xT) 1 1 1 Electron-phonon scattering, Zieman (1956) and Vining (1991) Combined phonon relaxation time D kB T 0 k( T n ) klatt ( T) ke( T n ) 4 x latt ( xT) x e ex 1 2 dx x h kB T Debye-Callaway formula This work 3 110 U xi T 2 f xi 100 ps PD xi T 2 f xi ps 0.8 k (W/m*K) 10 1 latt n1 T 2 xi T 2 f xi 0.1 ps 0.01 EP n1 T 2 xi T 2 f xi ps 0.6 0.4 3 110 0.01 0.1 1 10 xi 0.2 2 0 200 400 600 800 3 110 W m K T(K) Total thermal conductivity Electronic thermal conductivity Lattice thermal conductivity Zhao et al. (2014) k ni T 1 T 1 ni 1.5 300 K 900 K k ni T 3 T 3 ni W m K 1 0.5 0 16 110 17 110 18 110 ni 3 cm 19 110 20 110 Specific Heat Prediction, this work Debye cutoff freq. 0.8 1012 Hz 1 0.6 1 max 1012 Hz 1 d 5.339 cm Dulong-Petit limit D 155K gm 3 Cv_DP 3 kB da 3 0.252 J Cv gm K D 9 kB T 3 T Cv( T) 3 D d a 0.4 0.2 0 4 x x e e x 2 dx 1 0 0 1 2 i 10 3 12 Hz 4 0.3 5 0 12 max 10 Hz 0.2 Cv (J/g.K) gph i density This work 0.1 Prediction, this work Experiment, Zhao et al. (2014) 0 0 200 400 600 T (K) 800 110 3 3 Na V kB The End
© Copyright 2026 Paperzz