Revista Brasileira de Física, Vol. 7, Nº 1, 1977 Production of Negative Helium ions A. SZANTO DE TOLEDO and 0. SALA Instituto de Física *, Universidade de São Paulo, São Paulo SP Recebido e m 7 de Janeiro de 1977 A n e g a t i v helium i o n source u s i n g potassium charge exchange vapor has been developed ratorl. to be used as an i n j e c t o r f o r t h e P e l l e t r o n accele- 3 ~ and e a bem c u r r e n t s o f up t o 2pA have been e x t r a c t e d with 75% p a r t i c l e t r a n s m i s s i o n through the machine. Uma f o n t e de íons negativos de hél i o u t i l i zando vapor de potáss i o par a t r o c a de carga f o i desenvolvida para s e r u t i l izada j u n t o com o Ace1 lerador Pelletron . Feixes de p a r t í c u l a s de 3 ~ ee a, e n t r e 1 e 2 pA são e x t r a í d o s . com intensidade Uma transmissão de 75% das partículas a t r a v é s do a c e l e r a d o r é consegui da 1. INTRODUCTION Two-stage p a r t i c l e a c c e l e r a t o r s r e q u i r e t h e i n j e c t i o n o f negative ions. I n t h e case o f helium, due t o t h e e l e c t r o n i c c o n f i g u r a t i o n small a f f i n i t y o f an e x t r a e l e c t r o n , v e r y low e f f i c i e n c y and is the obtained i n t h e f o r m a t i o n o f a n e g a t i v e ion. The d e s i g n o f the n e g a t i v e h e l i u m i o n source, t o be used t o g e t h e r w i t h t h e P e l l e t r o n a c c e l e r a t o r o f t h e U n i v e r s i t y o f São Paulo, was based on t h e two s t e p process o f forming He- ions and on t h e c h a r a c t e r i s t i c s o f t h e beam. * P o s t a l address: C.P. 20516, 01000 -São Paulo SP. r e q u i red optical 2. PRODUCTION OF He- H o l 4 i e n and M i d t d a l showed t h a t t h e (1s 2 s 2p) "p5,/, s t a t e o f He- i s 3 ~ rnetastable w i t h an e s t i m a t e d mean l i f e o f 1 . 7 ~ 1 0 - sec. I n t h i s 4~,,2 s t a t e , t h e b i n d i n g energy o f t h e 2p e l e c t r o n i s o f t h e o r d e r o f 0.075 eV, Ref. 4, and a11 t h e o t h e r p o s s i b l e s t a t e s o f He- undergo decay by auto- ionization, i.e., decay by emission o f a f r e e e l e c t r o n . Based o n t h i s argument, Donnal l y e t ai!. suggested t h a t negative 1iurn ions c o u l d be produced by a nearly- resonant two-step he- charge ex- change r e a c t i o n , as f o l lows: ( i ) Forrnation o f HeO (1s 2s) 3 ~ 1 f rom He+ (1s) by a charge exchange t r a n s f e r c o l l i s i o n w i t h an a1,kali atom; ( i i) Forrnation o f He- from HeO (1s 2s) 3 ~ 1 by elec- pick- up o f a 2p t ron: He+(ls) + x O - + H e ( 1 ~ 2 s )+ x~ + ~ ~and Charge exchange r e a c t i o n s a r e n e a r l y-resonant when t h e change IAEl t h e i n t e r n a 1 energy o f t h e c01 1 i d i n g system i s very smal 1. A qual i t a - of t i v e i n t e r p r e t a t i o n o f t h i s f e a t u r e rnay be given i n terms o f t h e e x t e n t t o which t h e c o l l i s i o n approximates t o a d i a b a t i c c o n d i t i o n s . This f a c t i s a consequence o f t h e "Massey c r i t e r i o n ' I 6 which states that the c r o s s - s e c t i o n f o r a charge exchange r e a c t i o n i s maximum when t h e c o l l i s i o n t i m e i s o f t h e o r d e r o f t h e e l e c t r o n i c t r a n s i t i o n time. C a l c u l a t i o n s based on t h i s c r i t e r i o n 7 and s u ~ t s ~ i n d' i~c a t e t h a t , i n t h e case o f a + He further experimental re- primary beam, a s a t i s f a c - t o r y e f f i c i e n c y can be reached when an a l k a l i element (vapor) i s used as t h e medium f o r t h e charge t r a n s f e r . I n Table 1 a r e shown t h e c a l c u l a t e d d i v i d u a l p i c k - u p r e a c t i o n s , i .e., ion. 7 resonance energy f o r t h e two f o r m a t i o n o f t h e Heo-atom and As b o t h r e a c t i o n s occur i n t h e same chamber they a r e n o t inHe- obser- a > Ci e- l i n .-m N a - r ved i n d i v i d u a l l y , and t h e experimental resonance energy f o r the com- o l e t e process i s shown i n t h e l a s t column o f Table 1 . T d L e I . Resonance energy ( K ~ v )f o r : lst step: znd individual 'ormation o f ( l s 2 s ) Element 3 ~ step: 1f o r m a t i o n individual *PIj2 ~ e - ]eo Among t h e a l k a l i elements, potassium seems t o be t h e because i t has t h e necessary vapor pressure12 (-140°c), Exper i rnent a l o f (ls2s2p) at more convenient low temperature i s e a s i e r t o handle, cheaper, and l e s s t o x i c . 3. THE APPARATUS The n e g a t i v e h e l ium i o n source ( F i g . 1) c o n s i s t s e s s e n t i a l l y o f a v e n t i o n a l R.F. p o s i t i v e h e l ium i o n source13 ( F i g . 1 : ions a r e e x t r a c t e d when a p o s i t i v e b i a s V P 3) con- + He from which i s applied (Fig. 1 : 2). e x t r a c t i o n e l e c t r o d e ( ~ i ~ . l : 6t )o g e t h e r w i t h an e i n z e l l e n s An (Fig.l:8) i s used t o focus the posi t i v e beam i n t h e charge exchange chamber ( F i g . : l O T h i s chamber i s f i l l e d w i t h the a l k a l i vapor o b t a i n e d by t i n g t h e potassium i n a s t a i n l e s s s t e e l oven ( ~ i g . 1:I 1 ) . The hea- exchan- ge chamber i s e l e c t r i c a l l y connected t o t h e externa1 e l e c t r o d e s o f the einzel lens. + I n t h i s way, i t i s p o s s i b l e t o c o n t r o l t h e He beam ener- gy so as t o maximize t h e e f f i c i e n c y o f t h e charge exchange process. A v e r y srnall c o n t a c t area between t h e chamber and i t s support reduces t h e heat l o s s . Fig. 2. He-/He + y i e l d and beam i n t e n s i t y vs. He + energy. To prevent the condensation of potassium i n the high e l e c t r i c a l grad i aph ragms d i e n t region o f the i o n source, two pai r s o f copper are used i n the entrance ( F i g . l :9) and e x i t (Fig.1 :lO) o f the charge change chamber. vapor, To increase the e f f i c i e n c y o f trapping of ex- potassium t h e diaphragms are cooled by a freon exchanger c i r c u i tl', :l4) A second e i n z e l lens ( F g.l magnetic analyser (Fig. :17) i s employed t o separate qmponents o f the beam, mainly trons. i s used i n the He- beam t r a n s p o r t . A + HeO, He the different ions, contaminants and elec- I n t h i s case, a 30° d e f l e c t i o n i s used, defined by a s l i t sys- tem (Fig.l:19). The negative helium ions o f 85 are then accelerated up t o an energy KeV by means o f a t e n e l e c t r o d e a c c e l e r a t i n g tube. This final beam energy was chosen t o g e t the l a r g e s t possible overlap between the emittance15 o f the i o n source and t h e acceptance o f the Pel l e t r o n accelerator. Thus a s a t i s f a c t o r y p a r t i c l e transmission through the machine can be obtained. As the charge exchange process i s nearly-resonant, there e x i s t s an opI n Fig. 2, one timum energy a t which the e f f i c i e n c y i s maximum. see the dependence on t h e i n c i d e n t energy o f the y i e l d ( i .e He-/He+ beam i n t e n s i t i e s ) . c o l l i s i o n energy o f 11 KeV. A maximum r a t i o o f 5% can be can the r a t i o reached a t a This r e s u l t i s i n agreement w i t h the li- m i t s predicated by the Massey c r i t e r i o n . + The t o t a l He- beam i n t e n s i t y as a f u n c t i o n o f He sented i n Fig. 2. energy i s a l s o One can see t h a t t h e energy corresponding highest beam i n t e n s i t y does not correspond t o the highest He+ . to ratio This i s due t o the f a c t t h a t the charge exchange chamber prethe ~e-/ bias i s the same as the e x t r a c t i o n e l e c t r o d e b i a s which a f f e c t s the extracted He+ beam i ntens i t y . F i g . 3; ~ e beam i n t e n s i t y vs. potassium temperature. The dimensions o f the charge exchange charnber a l l o w a 95% positive beam transrnission. Negative heliurn bearn i n t e n s i t i e s o f the o r d e r o f 1-2 VA can be reached, depending on the c p e r a t i o n c o n d i t i o n s . The potassium vapor pressure i n s i d e t h e charge exchange c e l l c r i t i c a l ; w i t h a v e r y low pressure, two c o l l i s i o n s o f t h e He is +' r i n g i t s t r a n s i t i n t h e c e l l a r e irnprobable; and w i t h a h i g h ion very du- pressure t h e r e i s a l a r g e p r o b a b i l i t y o f l o s i n g the 2p e l e c t r o n (which i s very . weakl y bound t o t h e He- atom: 0 .O75 e ~ ) The potassium vapor pressure i s c o n t r o l l e d by t h e oven heating c u r r e n t . The oven and c e l l ternperatures a r e monitored by means o f an iron-const a n t a n thermocouple. The r e l a t i o n between t h e n e g a t i v e bearn c u r r e n t and the potassium c o n t a i n e r i s shown i n F i g u r e 3. t h e temperature o f The potassium consurnp- t i o n i s estirnated i n 100 mg per hour. I t i s found necessary t o process t h e potassium b e f o r e use i n the ion source. until the The oven i s heated o u t o f the source, i n vacuum, potassium m e l t s and a11 t h e o i l bubbles o u t . I n normal o p e r a t i o n , a good vacuum source. Torr) i s required inside the A change o f 50% i n t h i s pressure can be r e s p o n s i b l e f o r a r e - d u c t i o n o f 20% i n t h e He- beam i n t e n s i t y . The i o n source described i n t h i s a r t i c l e has been i n normal operation i n t h e Pel l e t r o n A c c e l e r a t o r o f t h e U n i v e r s i t y o f São Paulo since 1973, 4 ~ e -beams. f o r t h e i n j e c t i o n o f 3 ~ e and A p a r t i c l e t r a n s m i s s i o n o f 75% f o r 3 ~ and e a beams i s normal l y obtained The i o n source i s a b l e t o o p e r a t e d u r i n g a continuous p e r i o d week. of When t h e potassiurn i n t h e oven i s exhausted, t h e c o n t a i n e r be replaced e a s i l y w i t h o u t dismounting the i o n source. one can The a u t h o r s would l i k e t o thank Joel P e r e i r a , V i c t o r H. Rotberg, Fung Chen and A. T. Mendes f o r t h e i r c o l l a b o r a t i o n in the Wang project, c o n s t r u c t i o n and t e s t s o f t h e i o n source. REFERENCES 1 . O. Sala and G . Spalek, Nucl. I n s t . Meth. 122, 213 (1974). & 2. E. H o l @ i e n and J . M i d t d a l , Proc. Phys. Soc. ( ~ o n d o n ) A68, 815 (1955). 3. J. P i e n t e n p o l , Phys. Rev. L e t t e r s 7, 64 (1961). 4. E. Hol$ien, Arch. Math. Natur., Donnally and G. Thoeming, Phys. Rev. 159, n? 1, 87 (1967). 5. B.L. 6. H.S.W. Massey, Rept. Progr. Phys. 12, 248 (1949). 7. A. Szanto de Toledo (1970) 5 2 , 81 (1951). - - Master Thesis I .F. U n i v e r s i t y o f São Paulo . 8. R.M. Ennis Jr., B. Donnally. 75 (1967 - D.E. I.E.E.E. Schechter, G. Thoeming, and D.B. Achlafke Transactions on Nuclear Science, NS - and 14, n ? 3 , 1. 9. F.A. Sci ., NS - Rose, P.B. T o l l e f s r u d , and H.T. Richargs - I.E.E.E.Trans.Nuc1. 14, n? 3, 78 (1967). 10. Progress i n Nuclear Techniques and I n s t r u m e n t a t i o n - Vol.11-1,John W i l e y & Sons I n c . N.York, 1968. 11. J. John, C.P. and R.H. Davis - Robison, J.P. Nucl. A l d r i d g e , W.J. I n s t . & Meth. 57 , - 4bth' 12. Handbook o f Chemistry ànd Physics Co. - Wallace, K.R. Chapman , 105 (1967). ed. - Chemical Rubber Pub. 1962. 13. General lonex C o r p o r a t i o n - Mod. I 14. Ortec Heat Exchanger Mod. 338 - - 501. B. 15. A. S e p t i e r , Focusing of Charged ParticZes, Vol. 2, Academic N. York. Press,
© Copyright 2026 Paperzz