1. Write an equations in both standard and general forms for each ellipse. a. b. c. 2. Graph each ellipse. Identify the vertices, and co-vertices. Find the lengths of the major and minor axes. x 2 y2 1 a. 9 16 b. 4x2 + 9y2 = 36 c. 4(x − 3)2 + 9(y + 2)2 = 36 3. Use completing the square to change each general form ellipse to standard form. a. 9x2 + 4y2 + 8y − 32 = 0 b. x2 + 4y2 + 6x − 8y − 3 = 0 Identify the center, vertices, co-vertices, foci, length of the major and minor axis of each. 4. 𝑥2 49 + 5. 𝑥2 36 + 16 = 1 6. 𝑥2 25 + 49 = 1 7. 𝑦2 169 𝑦2 𝑦2 (𝑥+9)2 81 8. =1 + (𝑥−5)2 1 𝑦−1)2 4 + =1 (𝑦+4)2 64 =1 9. (𝑥−4)2 4 + (𝑦−8)2 36 =1 10. (𝑥−9)2 9 + (𝑦−2)2 1 =1 11. (𝑥−7)2 49 + (𝑦+2)2 36 =1 Identify the center, vertices, co-vertices, foci, length of the major and minor axis of each. Then graph each equation 12. 𝑥2 4 + 𝑦2 9 =1 13. 𝑥2 49 14. 𝑥2 9 + 𝑦2 49 =1 15. (𝑥−1)2 4 + 𝑦2 = 1 + 𝑦2 49 =1 Write each equation in standard form. Identify the center, vertices, co-vertices, foci, length of the major and minor axis of each. 16. 8x2 + 2y2 = 32 17. x2 + 4y2 + 2x - 24y + 33 = 0 18. 4x2 + 9y2 + 24x - 90y = -225 19. 25x2 + 4y2 - 200x - 8y + 304 = 0 20. 9x2 + 16y2 - 54x + 64y + 1 = 0 21. x2 + 121y2 - 726y + 968 = 0 22. 16x2 + 4y2 + 96x - 8y + 84 = 0 23. 4x2 + 9y2 + 96x - 16y - 11 = 0 Change the following to general form 24. 𝑥2 9 + (𝑦−1)2 25 =1 25. (𝑥−3)2 64 + (𝑦+1)2 36 =1 Use the following information provided to write the standard form equation of each ellipse. 26. vertices (10, 0) and (-10, 0); co-vertices (0, 9) and (0, -9) 27. vertices (0, 6) and (0, -6); co-vertices (5, 0) and (-5, 0) 28. center (7, -10); vertex (-6, -10), co-vertex (7, -17) 29. center (1, -7); vertex (1, 1), c2 = 55 30. center (4, -8); height 18, width 14 31. major axis is vertical, center (8, -2); major axis is 18 units long; minor axis is 8 units long 32. Center at (2, 5) with the longer axis of length 12 and parallel to the x-axis, shorter axis of length 10. 33. Center at (-3, 4) with the longer axis of length 8 and parallel to the y-axis, shorter axis of length 2. 34. center (0, 0) with vertex (0, 2) and co-vertex (-1, 0) 35. center (-2, 3) having major axis length 10 and minor axis length 6 36. vertices (-2, 2) and (4, 2) and co-vertices at (1, 4) and (1, 0) 37. vertex at (-5, 1) and co-vertex at (-3, 2)
© Copyright 2026 Paperzz