Chapter 15 Solutions 1. A homogeneous mixture is a combination of two (or more) pure substances that is uniform in composition and appearance throughout. Examples of homogeneous mixtures in the real world include rubbing alcohol (70% isopropyl alcohol, 30% water) and gasoline (a mixture of hydrocarbons). 2. solvent, solute 3. When an ionic solute dissolves in water, a given ion is pulled into solution by the attractive ion–dipole force exerted by several water molecules. For example, in dissolving a positive ion, the ion is approached by the negatively charged end of several water molecules: if the attraction of the water molecules for the positive ion is stronger than the attraction of the negative ions near it in the crystal, the ion leaves the crystal and enters solution. After entering solution, the dissolved ion is surrounded completely by water molecules, which tends to prevent the ion from reentering the crystal. 4. One substance will mix with and dissolve in another substance if the intermolecular forces are similar in the two substances, so that when the mixture forms, the forces between particles in the mixture will be similar to the forces present in the separate substances. Sugar and ethyl alcohol molecules both contain polar –OH groups, which are comparable to the polar –OH structure in water. Sugar or ethyl alcohol molecules can hydrogen-bond with water molecules and intermingle with them freely to form a solution. Substances like petroleum (whose molecules contain only carbon and hydrogen) are very nonpolar and cannot form interactions with polar water molecules. 5. saturated 6. unsaturated 7. variable 8. large 9. Increasing the surface area of a solid increases the amount of solid that comes in contact with the solvent. Typically, particles of a solid are broken into smaller pieces by grinding. This increases the surface-to-volume ratio of each particle and thus increases the amount of solid in contact with the solvent. 10. An increase in temperature means an increase in the average kinetic energy. Thus, in a warmer solution the particles of the liquid solvent are moving more rapidly. Because of this, there is an increased rate in solute–solvent interaction, which increases the rate of dissolving. 11. An increase in temperature means an increase in average kinetic energy. In a warmer solution, the solvent and solute particles are moving more rapidly. If the solute particles are gaseous, faster moving particles are more likely to have enough energy to escape from the liquid. World of Chemistry 154 Copyright Houghton Mifflin Company. All rights reserved. 155 Solutions 12. a. b. c. d. 13. 14. 15. 16. 5.00 g CaCl2 1.00 g CaCl2 100 = 5.00% CaCl2 (19.0 g H 2 O + 1.00 g CaCl2 ) 15.00 g CaCl2 (285 g H 2 O + 15.00 g CaCl2 ) 100 = 5.00% CaCl2 0.00200 g CaCl2 100 = 5.00% CaCl2 (0.0380 g H 2 O + 0.00200 g CaCl2 ) To say that a solution is x% NaCl means that 100 g of the solution would contain x g of NaCl. a. 11.5 g solution b. 6.25 g solution c. 54.3 g solution d. 452 g solution 5.34 g KCl (5.34 g KCl + 152 g H 2 O) 6.25 g NaCl 100 g solution 11.5 g NaCl 100 g solution 0.91 g NaCl 100 g solution 12.3 g NaCl 100 g solution 100 = 67.1 g CaCl2 (67.1 g CaCl2 + 275 g H 2 O) 285 g solution 285 g solution 17. 100 = 5.00% CaCl2 (95.0 g H 2 O + 5.00 g CaCl2 ) 100 g solution 7.50 g Na 2 CO3 100.0 g solution g pentane = 93 g solution = 0.719 g NaCl = 0.49 g NaCl = 55.6 g NaCl 5.34 g 157.34 g 100 = 3.39% KCl 100 = 19.6% CaCl2 5.00 g NaCl g heptane = 93 g solution = 0.719 g NaCl = 14.3 g NaCl = 21.4 g Na2CO3 5.2 g heptane 100. g solution 2.9 g pentane 100. g solution = 4.8 g heptane = 2.7 g pentane g hexane = 93 g solution – 4.8 g heptane – 2.7 g pentane = 86 g hexane 18. 0.105 19. 0.221 mol Ca2+; 0.442 mol Cl– World of Chemistry Copyright Houghton Mifflin Company. All rights reserved. 156 Chapter 15 20. To say that a solution has a concentration of 5 M means that in 1 L of solution (not solvent) there would be 5 mol of solute: to prepare such a solution one would place 5 mol of NaCl in a 1-L flask, and then add whatever amount of water is necessary so that the total volume would be 1 L after mixing. The NaCl will occupy some space, so the amount of water to be added will be less than 1.00 L. 21. Molarity = a. moles of solute liters of solution 250 mL = 0.25 L M= b. 22. M= Molarity = a. 0.50 mol KBr 0.50 mol KBr 0.75 L solution 0.50 mol KBr moles of solute liters of solution Molar mass of CuCl2 = 134.45 g M= 1 mol 134.45 g 0.0316 mol CuCl2 0.125 L solution 125 mL = 0.125 L = 0.0316 mol CuCl2 = 0.253 M Molar mass of NaHCO3 = 84.01 g 0.101 g NaHCO3 M= c. = 0.67 M = 0.50 M 1.0 L solution 4.25 g CuCl2 b. = 1.0 M 0.500 L solution 750 mL = 0.75 L M= d. = 2.0 M 0.25 L solution 500 mL = 0.500 L M= c. 0.50 mol KBr 1 mol 84.01 g 0.00120 mol NaHCO3 0.0113 L solution 11.3 mL = 0.0113 L = 0.00120 mol NaHCO3 = 0.106 M Molar mass of Na2CO3 = 105.99 g 52.9 g Na2CO3 M= World of Chemistry 1 mol 105.99 g 0.499 mol Na 2 CO3 1.15 L solution = 0.499 mol Na2CO3 = 0.434 M Copyright Houghton Mifflin Company. All rights reserved. 157 Solutions d. Molar mass of KOH = 56.11 g 0.14 mg KOH M= 23. 10 mg 1 mol 0.0015 L solution 56.11 g 1 mol 101.1 g 0.448 mol KNO 3 = 0.448 mol KNO3 molar mass of I2 = 253.8 g M= 1 mol 253.8 g 225 mL = 0.225 L = 1.99 M 0.225 L solution 5.15 g I2 = 2.50 10–6 mol KOH = 1.67 10–3 M = 1.7 10–3 M molar mass of KNO3 = 101.1 g M= 25. 3 2.50 x 106 mol KOH 45.3 g KNO3 24. 1g 1.5 mL = 0.0015 L 225 mL = 0.225 L = 0.0203 mol I2 0.0203 mol I 2 0.225 L solution = 0.0902 M molar mass of FeCl3 = 162.2 g 1.01 g FeCl3 1 mol FeCl3 162.2 g FeCl3 = 0.00623 mol FeCl3 10.0 mL = 0.0100 L M= 0.00623 mol FeCl3 0.0100 L solution = 0.623 M Since one mole of FeCl3 contains one mole of Fe3+ and three moles of Cl–, the solution is 0.623 M in Fe3+ and 3(0.623) = 1.87 M in Cl– 26. molar mass of NaOH = 40.00 g 495 g NaOH = M= 27. a. 1 mol 40.00 g 12.4 mol NaOH 20.0 L solution = 12.4 mol NaOH = 0.619 M molar mass of HNO3 = 63.02 g 0.127 L solution 0.105 mol HNO 3 0.0133 mol HNO3 World of Chemistry 1.00 L solution 63.02 g HNO 3 1 mol HNO 3 127 mL = 0.127 L = 0.0133 mol HNO3 = 0.838 g HNO3 Copyright Houghton Mifflin Company. All rights reserved. 158 Chapter 15 b. molar mass of NH3 = 17.03 g 0.155 L solution 2.34 mol NH3 c. 15.1 mol NH 3 1.00 L solution 17.03 g NH 3 molar mass KSCN = 97.19 g 2.01 x 10 3 mol KSCN 0.0122 L solution 0.0299 mol HCl a. 0.0102 L 5.51 L 5.51 L c. 12.2 mL = 0.0122 L 2.45 mol HCl 1.00 L solution 36.46 g HCl 1 mol HCl 0.251 mol NH 4 Cl 1 L solution 53.49 g NH 4 Cl 1 mol NH 4 Cl = 0.0299 mol HCl = 1.09 g HCl 450 mL = 0.450 L = 0.113 mol NH4Cl = 6.04 g NH4Cl 10.2 mL = 0.0102 L 0.0102 L b. = 0.491 g KSCN 1 mol KSCN molar mass of NH4Cl = 53.49 g 0.113 mol NH4Cl 29. 97.19 g KSCN molar mass of HCl = 36.46 g 0.450 L solution = 5.05 10–3 mol KSCN 1.00 L solution 5.05 10–3 mol KSCN 28. = 2.34 mol NH3 = 39.9 g NH3 1 mol NH 3 2.51 L solution d. 155 mL = 0.155 L 0.451 mol AlCl3 1.00 L 0.451 mol AlCl3 1.00 L 0.103 mol Na 3 PO 4 1.00 L 0.103 mol Na 3 PO 4 1.00 L 1 mol Al3+ 1 mol AlCl3 3 mol Cl 1 mol AlCl3 = 4.60 10–3 mol Al3+ = 1.38 10–2 mol Cl– 3 mol Na + 1 mol Na 3 PO 4 1 mol PO 4 3 1 mol Na 3 PO 4 = 1.70 mol Na+ = 0.568 mol PO43– 1.75 mL = 0.00175 L 0.00175 L 0.00175 L World of Chemistry 1.25 mol CuCl2 1.00 L 1.25 mol CuCl2 1.00 L 1 mol Cu 2+ 1 mol CuCl2 2 mol Cl 1 mol CuCl2 = 2.19 10–3 mol Cu2+ = 4.38 10–3 mol Cl– Copyright Houghton Mifflin Company. All rights reserved. 159 Solutions d. 25.2 mL = 0.0252 L 0.00157 mol Ca(OH) 2 0.0252 L 1.00 L 0.00157 mol Ca(OH) 2 0.0252 L 30. 1.00 L 1 mol Ca 2+ 1 mol Ca(OH) 2 2 mol OH 1 mol Ca(OH) 2 = 3.96 10–5 mol Ca2+ = 7.91 10–5 mol OH– 250. mL = 0.250 L 0.250 L solution 0.100 mol AgNO3 1.00 L solution = 0.0250 mol AgNO3 molar mass AgNO3 = 169.9 g 0.0250 mol AgNO3 31. 1 mol AgNO 3 = 4.25 g AgNO3 M1 V1 = M2 V2 a. M1 = 0.251 M M2 = ? V1 = 125 mL V2 = 250. + 125 = 375 mL M2 = b. c. (375 mL) = 0.0837 M M2 = ? V1 = 445 mL V2 = 445 + 250. = 695 mL (0.499 M ) (445 mL) (695 mL) = 0.320 M M1 = 0.101 M M2 = ? V1 = 5.25 L V2 = 5.25 + 0.250 = 5.50 L M2 = d. (0.251 M ) (125 mL) M1 = 0.499 M M2 = (0.101 M ) (5.25 L) (5.50 L) = 0.0964 M M1 = 14.5 M M2 = ? V1 = 11.2 mL V2 = 11.2 + 250. = 261.2 mL M2 = 32. 169.9 g AgNO 3 (14.5 M ) (11.2 mL) (261.2 mL) = 0.622 M M1 V1 = M2 V2 HCl: V2 = World of Chemistry M1 = 3.0 M M2 = 12.1 M V1 = 225 mL V2 = ? (3.0 M ) (225 mL) (12.1 M ) = 55.8 mL = 56 mL Copyright Houghton Mifflin Company. All rights reserved. 160 Chapter 15 HNO3: V2 = 33. V2 = ? = 42.45 mL = 42 mL M1 = 3.0 M M2 = 18.0 M V1 = 225 mL V2 = ? (3.0 M ) (225 mL) (18.0 M ) = 37.5 mL = 38 mL M1 = 3.0 M M2 = 17.5 M V1 = 225 mL V2 = ? (3.0 M ) (225 mL) (17.5 M ) H3PO4: V2 = V1 = 225 mL (15.9 M ) HC2H3O2: V2 = M2 = 15.9 M (3.0 M ) (225 mL) H2SO4: V2 = M1 = 3.0 M = 38.6 mL = 39 mL M1 = 3.0 M M2 = 14.9 M V1 = 225 mL V2 = ? (3.0 M ) (225 mL) (14.9 M ) = 45.3 mL = 45 mL M1 V1 = M2 V2 M1 = 3.02 M M2 = 0.150 M V1 = ? V2 = 125 mL = 0.125 L V1 = (0.150 M ) (0.125 L) (3.02 M ) = 0.00621 L = 6.21 mL The student could prepare her solution by transferring 6.21 mL of the 3.02 M NaOH solution from a pipet or buret to a 125-mL volumetric flask, and then adding distilled water to the calibration mark of the flask. 34. M1 V1 = M2 V2 M1 = 0.200 M M2 = 0.150 M V1 = 500. mL = 0.500 L V2 = ? V2 = (0.200 M ) (0.500 L) (0.150 M ) = 0.667 L = 667 mL Therefore, 667 – 500. = 167 mL of water must be added. 35. 27.2 mL = 0.0272 L 25.0 mL = 0.0250 L mol AgNO3 = 0.0272 L solution World of Chemistry 0.104 mol AgNO 3 1.00 L solution = 0.002829 mol AgNO3 Copyright Houghton Mifflin Company. All rights reserved. 161 Solutions 1 mol Cl 0.002829 mol AgNO3 M= 36. 0.002829 mol Cl = 0.002829 mol Cl– 1 mol AgNO 3 = 0.113 M 0.0250 L Ba(NO3)2(aq) + Na2SO4(aq) BaSO4(s) + 2NaNO3(aq) 12.5 mL = 0.0125 L moles Ba(NO3)2 = 0.0125 L 0.15 mol Ba(NO 3 ) 2 1.00 L = 1.88 10–3 mol Ba(NO3)2 From the balanced chemical equation for the reaction, if 1.88 10–3 mol Ba(NO3)2 is to be precipitated, then 1.88 10–3 mol Na2SO4 will be needed. 1.88 10–3 mol Na2SO4 37. 1 .00 L 0.25 mol Na 2SO 4 36.2 mL = 0.0362 L = 0.0075 L required = 7.5 mL 37.5 mL = 0.0375 L Since each formula unit of CaCO3 contains one Ca2+ ion, and since each Na2CO3 formula unit contains one CO32– ion, we can say that mol Ca2+ = 0.0362 L CaCl2 0.158 mol CaCl2 mol CO32– = 0.0375 L Na2CO3 1 L CaCl2 = 0.00572 mol Ca2+ 0.149 mol Na 2 CO3 1 L Na 2 CO3 = 0.00559 mol CO32– Since one Ca2+ reacts with one CO32–, Na2CO3 is the limiting reactant. Since 0.00559 mol CO32– reacts, 0.00559 mol of CaCO3 will form. molar mass CaCO3 = 100.1 g 0.00559 mol CaCO3 38. 100.1 g CaCO3 1 mol CaCO3 = 0.560 g CaCO3 Pb(NO3)2(aq) + K2CrO4(aq) PbCrO4(s) + 2KNO3(aq) molar masses: Pb(NO3)2, 331.2 g; PbCrO4, 323.2 g 1.00 g Pb(NO3)2 1 mol Pb(NO3 )2 331.2 g Pb(NO3 )2 = 0.003019 mol Pb(NO3)2 25.0 mL = 0.0250 L 0.0250 L solution 1.00 mol K 2 CrO 4 1.00 L solution = 0.0250 mol K2CrO4 Pb(NO3)2 is the limiting reactant: 0.003019 mol PbCrO4 will form. 0.003019 mol PbCrO4 World of Chemistry 323.2 g PbCrO 4 1 mol PbCrO 4 = 0.976 g PbCrO4 Copyright Houghton Mifflin Company. All rights reserved. 162 39. Chapter 15 HCl(aq) + NaOH(aq) NaCl(aq) + H2O(l) 25.0 mL = 0.0250 L 0.0250 L 0.150 mol NaOH 1.00 L 0.00375 mol NaOH 0.00375 mol HCl 40. = 0.00375 mol NaOH 1 mol HCl 1 mol NaOH 1 L solution = 0.00375 mol HCl = 0.01875 L = 18.8 mL 0.200 mol HCl HCl(aq) + NaOH(aq) NaCl(aq) + H2O(l) 50.0 mL = 0.0500 L 0.0500 L 0.104 mol HCl 41. a. = 0.00520 mol HCl 1.00 L solution 0.00520 mol HCl M= 48.7 mL = 0.0487 L 1 mol NaOH 1 mol HCl 0.00520 mol NaOH 0.0487 L = 0.00520 mol NaOH = 0.107 M NaOH(aq) + HC2H3O2(aq) NaC2H3O2(aq) + H2O(l) 25.0 mL = 0.0250 L 0.0250 L 0.154 mol HC 2 H 3O 2 1.00 L 0.00385 mol HC2H3O2 0.00385 mol NaOH b. = 0.00385 mol HC2H3O2 1 mol NaOH 1 mol HC 2 H 3O 2 1.00 L 1.00 mol NaOH = 0.00385 mol NaOH = 0.00385 L = 3.85 mL NaOH HF(aq) + NaOH(aq) NaF(aq) + H2O(l) 35.0 mL = 0.0350 L 0.0350 L 0.102 mol HF 1.00 L 0.00357 mol HF 1 mol HF 1 mol NaOH 0.00357 mol NaOH c. = 0.00357 mol HF = 0.00357 mol NaOH 1.00 L 1.00 mol NaOH = 0.00357 L = 3.57 mL H3PO4(aq) + 3NaOH(aq) Na3PO4(aq) + 3H2O(l) 10.0 mL = 0.0100 L World of Chemistry Copyright Houghton Mifflin Company. All rights reserved. 163 Solutions 0.0100 L 0.143 mol H 3 PO 4 0.00143 mol H3PO4 0.00429 mol NaOH d. = 0.00143 mol H3PO4 1.00 L 3 mol NaOH = 0.00429 mol NaOH 1 mol H 3 PO 4 1.00 L 1.00 mol NaOH = 0.00429 L = 4.29 mL H2SO4(aq) + 2NaOH(aq) Na2SO4(aq) + 2H2O(l) 35.0 mL = 0.0350 L 0.0350 L 0.220 mol H 2SO 4 1.00 L 0.00770 mol H2SO4 2 mol NaOH = 0.0154 mol NaOH 1 mol H 2SO 4 1.00 L 0.0154 mol NaOH 42. = 0.00770 mol H2SO4 1.00 mol NaOH = 0.0154 L = 15.4 mL When H2SO4 reacts with OH–, the reaction is H2SO4(aq) + 2OH–(aq) 2H2O(l) + SO42–(aq) Since each mol of H2SO4 provides two moles of H+ ion, it is only necessary to take half a mole of H2SO4 to provide one mole of H+ ion. The equivalent weight of H2SO4 is thus half the molar mass. 43. 1.53 equivalents OH– ion are needed to react with 1.53 equivalents of H+ ion. By definition, one equivalent of OH– ion exactly neutralizes one equivalent of H+ ion. 44. N= a. number of equivalents of solute number of liters of solution equivalent weight NaOH = molar mass NaOH = 40.00 g 0.113 g NaOH 1 equiv NaOH 40.00 g = 2.83 10–3 equiv NaOH 10.2 mL = 0.0102 L N= b. 2.83 x 103 equiv 0.0102 L = 0.277 N equivalent weight Ca(OH)2 = molar mass 2 12.5 mg 1g 3 10 mg 1 equiv 37.05 g = 74.10 g = 37.05 g 2 = 3.37 10–4 equiv Ca(OH)2 100. mL = 0.100 L World of Chemistry Copyright Houghton Mifflin Company. All rights reserved. 164 Chapter 15 N= c. 3.37 x 103 equiv 0.100 L = 3.37 10–3 N equivalent weight H2SO4 = molar mass = 98.09 g 2 12.4 g 1 equiv = 49.05 g 2 = 0.253 equiv H2SO4 49.05 g 155 mL = 0.155 L N= 45. 46. 0.253 equiv 1 equiv NaOH a. 0.134 M NaOH b. 0.00521 M Ca(OH)2 c. 4.42 M H3PO4 1 mol NaOH = 0.134 N NaOH 2 equiv Ca(OH) 2 1 mol Ca(OH) 2 3 equiv H 3 PO 4 1 mol H 3 PO 4 = 0.0104 N Ca(OH)2 = 13.3 N H3PO4 molar mass H3PO4 = 98.0 g 35.2 g H3PO4 M= 1 mol H 3 PO 4 98.0 g H 3 PO 4 0.3592 H 3 PO 4 1.00 L 0.3592 M H3PO4 47. = 1.63 N 0.155 L = 0.3592 mol H3PO4 = 0.3592 M = 0.359 M 3 equiv H 3 PO 4 1 mol H 3 PO 4 = 1.08 N H2SO4(aq) + 2NaOH(aq) Na2SO4(aq) + 2H2O(l) 0.145 M NaOH = 0.145 N NaOH 0.0562 L NaOH 0.145 equiv 1.00 L 56.2 mL = 0.0562 L = 0.00815 equiv NaOH 0.00815 equiv NaOH requires 0.00815 equiv H2SO4 to react. 0.00815 equiv H2SO4 48. 1.00 L 0.172 equiv = 0.0474 L = 47.4 mL H2SO4 solution 2NaOH(aq) + H2SO4(aq) Na2SO4(aq) + 2H2O(l) For the 0.125 N H2SO4: Nacid Vacid = Nbase Vbase (0.125 N) (24.2 mL) = (0.151 N) (Vbase) World of Chemistry Copyright Houghton Mifflin Company. All rights reserved. 165 Solutions Vbase = 20.0 mL of the 0.151 N NaOH solution needed For the 0.125 M H2SO4: Since each H2SO4 formula unit produces two H+ ions, the normality of this solution will be twice its molarity. 0.125 M H2SO4 = 0.250 N H2SO4 Nacid Vacid = Nbase Vbase (0.250 N) (24.1 mL) = (0.151 N) (Vbase) Vbase = 39.9 mL of the 0.151 N NaOH solution needed 49. Colligative properties are properties of a solution that depend only on the number, not the identity, of the solute particles. 50. For a solution to boil, bubbles must form in the solution. Solute particles block water from entering these bubbles. It is not the nature of these particles that matters, but the number of the particles; thus, it is a colligative property. 51. Antifreeze solution is a concentrated aqueous solution that has a lower freezing point than water. It will also have a higher boiling point than water (a solute in water both lowers the freezing point and raises the boiling point). 52. millimol CoCl2 = 50.0 mL 0.250 M CoCl2 = 12.5 millimol CoCl2 This contains 12.5 millimol Co2+ and 25.0 millimol Cl– millimol NiCl2 = 25.0 mL 0.350 M NiCl2 = 8.75 millimol NiCl2 This contains 8.75 millimol Ni2+ and 17.5 millimol Cl– Total millimol Cl– after mixing = 25.0 + 17.5 = 42.5 millimol Cl– Total volume after mixing = 50.0 mL + 25.0 mL = 75.0 mL Mcobalt(II) ion = Mnickel(II) ion = Mchloride ion = 53. 12.5 millimol Co2+ 75.0 mL 8.75 millimol Ni2+ = 0.117 M 75.0 mL 42.5 millimol Cl 75.0 mL = 0.167 M = 0.567 M AgNO3(s) + NaCl(aq) AgCl(s) + NaNO3(aq) molar masses: AgNO3, 169.9 g; AgCl, 143.4 g 10.0 g AgNO3 1 mol AgNO 3 169.9 g AgNO 3 = 0.05886 mol AgNO3 50. mL = 0.050 L World of Chemistry Copyright Houghton Mifflin Company. All rights reserved. 166 Chapter 15 0.050 L 1.0 x 102 mol NaCl = 0.00050 mol NaCl 1.00 L NaCl is the limiting reactant. 0.00050 mol AgCl form. 0.00050 mol AgCl 143.4 g AgNO 3 1 mol = 0.072 g AgCl (72 mg) Since 1 mol AgNO3 contains 1 mol Ag+, the mol Ag+ remaining in solution = 0.05886 – 0.00050 = 0.05836 mol AgNO3 0.05836 mol AgNO3 = 0.05836 mol Ag+ Msilver ion = 54. 0.05836 mol Ag + 0.050 L = 1.167 M = 1.2 M Ba(NO3)2(aq) + H2SO4(aq) BaSO4(s) + 2HNO3(aq) 37.5 mL = 0.0375 L 0.0375 L 0.221 mol H 2SO 4 1.00 L = 0.00829 mol H2SO4 Since the coefficients of Ba(NO3)2 and H2SO4 in the balanced chemical equation for the reaction are both one, then 0.00829 mol of Ba2+ ion will be precipitated from the solution as BaSO4. molar mass BaSO4 = 233.4 g 0.00829 mol BaSO4 55. 233.4 g BaSO 4 1 mol BaSO 4 = 1.93 g BaSO4 precipitate molar mass H2O = 18.0 g 1.0 L water = 1.0 103 mL water 1.0 103 g water 1.0 103 g H2O 56. 1 mol H 2 O 18.0 g H 2 O = 56 mol H2O molar mass CaCl2 = 111.0 g 14.2 g CaCl2 1 mol CaCl2 111.0 g CaCl2 = 0.128 mol CaCl2 50.0 mL = 0.0500 L M= 0.128 mol CaCl2 0.0500 L World of Chemistry = 2.56 M Copyright Houghton Mifflin Company. All rights reserved. 167 Solutions 57. M1 V1 = M2 V2 a. M1 = 0.200 M M2 = ? V1 = 125 mL V2 = 125 + 150. = 275 mL M2 = b. V1 = 155 mL V2 = 155 + 150. = 305 mL 59. (0.250 M ) (155 mL) (305 mL) = 0.127 M M1 = 0.250 M M2 = ? V1 = 0.500 L = 500. mL V2 = 500. + 150. = 650. mL (0.250 M ) (500. mL) (650. mL) = 0.192 M M1 = 18.0 M M2 = ? V1 = 15 mL V2 = 15 + 150. = 165 mL M2 = 58. = 0.0909 M M2 = ? M2 = d. (275 mL) M1 = 0.250 M M2 = c. (0.200 M ) (125 mL) (18.0 M ) (15 mL) (165 mL) = 1.6 M 1 equiv HC 2 H 3O 2 a. 0.50 M HC2H3O2 b. 0.00250 M H2SO4 c. 0.10 M KOH 1 mol HC 2 H 3O 2 2 equiv H 2SO 4 1 mol H 2SO 4 1 equiv KOH 1 mol KOH = 0.50 N HC2H3O2 = 0.00500 N H2SO4 = 0.10 N KOH Nacid Vacid = Nbase Vbase Nacid (10.0 mL) = (3.5 10–2 N)(27.5 mL) Nacid = 9.6 10–2 N HNO3 60. [A] = 4 mol 1.0 L = 4.0 M, [B] = 6 mol 4.0 L = 1.5 M, [C] = 4 mol 2.0 L = 2.0 M, [D] = 6 mol 2.0 L = 3.0 M, [A] > [D] > [C] > [B] World of Chemistry Copyright Houghton Mifflin Company. All rights reserved.
© Copyright 2026 Paperzz