FMPCIO Unit 2: Polynomials Lesson 1: Multiplying & Dividing Monomials 2 y 5 3x This is a term of a polynomial. The 3 is called the coefficIent, the x and y are called the variables, and the 5 and 2 are the exponents. The exponents must be whole numbers. Types of polynomials # of Terms Type of Polynomial Example I 2 3 4 DEGREE OF POLYNOMIALS: In general, degree refers to the highest sum of exponents of any one term of a polynomial Example 1: State the degree of each polynomial x 1 x+ 2 + 3 a)x — degree: n m 2 -m 4 c)m + + 3 n 2 - x y xy+1 ÷ 3 b)x + y 2 ÷ degree: degree: Example 2: Simplify a) (3a) (2a) b) (12x) ) 2 ) (np 3 n 2 c) (2m d) 1 2x 5 2 3x (3X2) (-2x) e) 5 12m 3 24m )(2x (3x 3 ) g) 2 f) 5 n 2 28m — I) 3 n 2 12m 3 ) 5 y (—3x 2 ) (—4xy y 4 8x HW: 2.1 Worksheet Attached 2.1 Multiplying & Dividing Monomials Worksheet 1! Simplify,. a) 4 X5x 2 (7x ) N (3aX4a) e) 1) y (—7y 4 (—8 ) 5 ) 2! Simplify, a) (6x)(3y) e) (—9rXSrs ) 3 —6c4 s) 4b) (—7b X 3 4q) (Sp X b) 2 .1) (4c4)(—I 1cr) 3+ Simplify. a) (—4abX2b ) 2 8p 3pq ci) 2 (— — 5 q ) 4. Simplify. a’ i2x 2 3x ‘ 3 —24cd e) m ic) 2 9m (—6 X 3 — (PX—60) c) m (—ln) 3 (—5 ) ) (_2s12X.3st) 36,,,6 2 4rn C,i 5 n 2 28in g, . A! 54a8 2 —6a ci’‘ —32aNø li’ ‘ 3 n 2 -7rn 5. Simplify a) ci) 4 s 0 36r s 2 8r 6ab 3 X 2 b 4 (3a ) 4 b 3 9a 6. ci) )(._5p 3 (_4pq3 2 ) b ‘ ci) j42xy2)! y 8 -45x 2 y 4 15x ‘ X6mn 2 n 4 e) (4m n 6 —3rn . a X2a 4 (—3 b 2 1,) ) flfl (3m2n3X_21 3 ) 2 e) c) b) c) e) o “. ci) (2cjbX7a) h) 2 Xbc 3 c (2b ) c) ) 3ab 3 X b 2 (7a ) a f) 2 (—3ab)(2ab X b X—2m 3 2 (6m ) 4 b) n ) )(3x )(4x (2xy y 2 y e) 3 b’‘ ci) 2 2n) (5n X p) p 3p —’2 (— h) 3 (12 ) 5 X 521, q 2 3p 45p 6 q 9 2 q 3 —14p ) )(6x 3 y 2 (h y )(33 Z 4 (5y2(S ) 1) (5x2.v)N3xZ9P FMPCIO Unit 2: Polynomials Lesson 2: Adding & Subtracting Monomials In General: When adding and subtracting polynomials you can only add or subtract like terms. This means that you can only add and subtract terms that have the same variables raised to the same powers respectively. Examøle 1: Simplify a) (2x — 2 c) (4x — 7y) + (8x 7xy + 3) 3y) — 2 (x + — 5yx + 9) — 2 (x + 11) b) (5x + 6xy 11) — — (2x + 4) —6x+2 2 7x 3x— 4 4x — 2 d)Add: Example 2: Simplify and state the degree of the monomial. 2 a) (4a y 2 b) (x — — ) 2 3b ) 2 y + — 2 (2a y 2 (4x — + ) 2 b — ) 3x y 2 2 (3a — + 2 (y 4) — = y 2 2x — ) 2y x 2 = HW: 2.2WorksheetAttached 2.2 Adding and Subtracting Monomials Worksheet 1. Simplify. a) (6a÷9)÷(4a—5) 1,) (2x—7y)+(Sx—3y) +4)(7+9m (3m ) c) 2 d) (+ll)—(2p+4) —9x)—(6x (17x — 5x) e) 2 1) (7k÷31)—(i2k—$1) 2. Simplify. a) 2 —2m—7) (3m + Sm+9)+(8m 3 b) (7a — 2 3 + 6a 2 ÷ Sa) + (—3a 2a — 2a) —i5x—lly) (x + Sx÷6y)—(4x c) 2 d) (512_13t+17)+(9t3_712+31_26)_(l612+51_8) + 5a 3 ) 2 3a a 8)—(12 —7a +(2a — 2 (2÷8a ) — 3 e) — f) 2 6x—li) — (4x — + Sx+9)—(8x lx+3)—(x 4, Sirnplifi, and state the degree of the polynomiEL y—5x 3x 33’X +2y — (5x y x — + ) —y)—(2xy a) 2 2 ÷ 7q q 3 p 2 b) (p — 3g,) + (2q — q 2 6p — ) 3 p 2 q — (3rn -2n+7) 3rn+7)—(2n c) 2 d) (2ab—2ac—2bc)÷(2ca÷2cb—2ba+3) y 2 e) (xy + 3yx + 2x — ) 2 3xy — (2xy ± ) 2 2yx 5. Mi —6x±7 2 a) 3x —2x÷9 2 7x 2 — 3 b)7z ÷ z—3 6z _z±4 2 2z±4z 6. SWtract. y—Jxy+2xy 5x a) 2 v ÷ 4xy 2 3x 3 — n 2 4mn÷3rnn 1) 6rn 3 n t2rntt 4mn 2 2rn — — 7. Sb plify, and state the degree of the polynomial:, 2y 2x 2) —(4x ÷(y (3x ) — ) ÷ a) 2 m n m ÷(2n —(n — (m — ) + 2 b) ) c) (4x y 2 — 2yx) + (3yx 2 )— (3b 2 b —b 2 a 2 ci) (a + — ) 2 6xy — x 2 y ÷ 2y 2 (3x b) —(b 2 2a a 2 2 b — — — a) 2 b FMPIO Unit 2: Polynomials Lesson 3: Multiplying Polynomials Part I Example I: Simplify: a) 2x(3xy—5) y(4xy 3 -5x b) 2 + 7x) + y 4 llx c) 11(2x+ 3y)—7(3y— llx) 2 d) 2x(3x — 5xy + y ) 2 — x 5y ( 2 — 2y) HW: 2.3 Worksheet Attached 2.3 Multiplying A Monomial and a Polynomial Worksheet 1. Smiify. 2 + 10) a) 4(5x b) 72a — c) -(3k 5) — 2k) +i?fl_ 2 _9(...5ffi ) e) 3 5p+ 2 3(8p ) 1) 7 b) $(2a—3)÷lJa c) 5(y+2)—7y d) 4(lm—5)—13 2 e) —6(3p+2p)÷5p f) 7(5x—3y)—$3x a) 12 5x—4) b) 3a(—7a+2) c) 6p(2p—q) e) 3 7rn ( 3nm +6) —8x ( 5x ÷ ly) f) 2 —.3b+9) 2 4) 12(2b 2. Simplify. a) 3(x+4)+7 d) —15n (6 2 — 9n) 4. Simplil. a) 3(x +2) + 2(x —6) c) 3(2a÷Wb—2c)—6(a—2b+Sc) b) 2(x +9) 3(x + 7) d) 3(2m—4n+3)—5(—2rn+5n—I) 5, Simplii’. a) 3x (x + y) + 2x 2 (3x + 5y) 3 b) 3a (2a 3 — — Sb) — 4a (2a + 3b 3 c) 2 5p ( 4p q) —8p (2p —7q) 2 4) 6a (—3a ÷ 7b —4) 8a 3 (2a 3b +7) 3 6. In a hockey league, each team plays afi other teams 4 iimes. Ifthere are n teams, wiite a formula for the total number ofgames to be played. — — 7. Simp1if. a) 2 (ab—a —2ab + b) — y b)3x + 2 xy—y) (xy c) 2 n(3mn÷nm —Sm — ) n 4) 5x(x—y)—231(x+y —1)+y 2 e) 2b(b—bc)—2c(b —c)÷(76c—4c ) 2 — 7x(x ) ÷ ) —2xy—2y(x y y ) 2 9. Simplity, and state the degree ofthe polynomiaL a) 3aTh —?a(a —4)+(5ba — 13a) 2 I,) 6rn(2mn — n) c) 4xy(x + 2y) — — n 2 3(m — 19mn) + 6n(—Smn — ) 2 7m 2 3y(3x $x(2xy 3y 2 + 7xy — — 4) 2 — 5s(3E + + s—6)+9(s 7s+2)+2s(5s 6s—4) e) 4x(5x 2 1) Sxy—3y(2x —y)÷7x(Sy 2 —2y 3 —x)+9(x ) 10. Simpliê, a) (1 la + 3X9a) 2 + 2a 3X—4a) 4) (5a — b) (3x SX—2x) e) I 2n(3n —7) — c) $ 5x(16x + 12) 1’) 5x(2x 2 6x + 3) — FMPIO Unit 2: Polynomials Lesson 4: Multiplying Polynomials II Example 1: Simplify: a) (x+3)(x—2) b) (2a—4)(a+2) 2 c) (x+3) 2 d) (2x—4) —7x+12) 2 e) (x—3)(4x f) (x —7) (x + 8) (3x —4) Example 2: Express the area of the shaded region below as a polynomial. 3x+2y -*E- 2x—y +y 3x-y HW: 2.4 Worksheet Attached 2.4 Multiplying Polynomials Worksheet 1. Find the product. a) (4x÷ lX2x+3) d) (3x 7)(3x + 7) (2c—3)4c—5) f) 8x 2X3x 7) b) (5in—2)6m+ 1) e) 4r + 5X4t 8) C) — — — 2. Square the binomial. b)(x+y) a) (g+h) f) (k—I) e) (p...q) c)(i+n) g) (s•..f) d)(b+c) Ii) (u—v) 3. Find the product. 2 A +y) 3 a) ( 4rn—7) e) 2 (3a÷2) c) 2 a) (5t+iO)2 2) d) (Sx—9 Ii) (_5_6b)Z 2 b) (x+5y) (—4y—1l) f) 2 4. Find the product. a) (2÷y)(3x+y) d) (+3j)(+4i) 5. Find the product. 2 a) (3a + 5b) (8x—3y) e) 2 c) (2x—y)(3x+4y) f) (6x—2yX3x—7y) b) (3a+bX5a—b) e) (Sin—2nXlm—n) 2 b) (2m 7n) (—3s—5t) f) 2 — 6. Find the product. a) (x—y)(x+y) d) 6x 2yX6x + 2y — — b) (2m÷5n)(2rn—5n) e) ç7p + 2q)7p 2q) C) fl — — 2 4) (4p 3q) +7z (5y ) ii) 2 c) (6s 2i)3 (—5f÷4g) g) 2 (9a—4bX9a+4b) —12m + 9X—12m —9) 7. Simplify. a) (x_3)x+2)+(2X—5XX I) (2m÷3)(3rn÷5)+(rn—7X6m— ) c) 3 + 7b) e) (2a 5b)(3a + b) (6a bX4a b) (2x+4(3x—2)+(5X —2X3x—-4) d) (c+2dXc+d)—(C—2d)(C—d) f) (3x 2y)(5x y) (2x + 5’X3x y) 8. Simplify. ) 2+(x+ ( _S (2x_3) ) 2 X a) 3 2 2y) (x c) (2x y)(2x + y) 2 2 (5x + 2y) e) (5x 2y) ) S1) 2t 1)(4S— — -(s—3 2 (s b) 2 d) (7in 2nX3in + 5n) (4rn I in) 2 ÷ 2)2 2 + 3Xx 2 5) (3x f) (2x — — — — — — — — — — — — — — — — 9. Find the product. ÷ 3 ....4) 2 (3x 1X2x a — 5X3 8a (2a— + 2 ) c) 9 a) — 10. Find the product. a) (3x+4)(x—5X2X+8) c) (3x ÷22x— 5)4x —3) t2a 7) 2 e) 5a 3 — — m 12) .3X4+ 7m (m— — b) 2 + )(5p 6p d)(3p+2 — ) 2 b) (4p—3X2p—7X5P—6) d) (2x —5)(3x 5m — +4)2 — 11 Find the perimeter and area of each shaded region. * a) r 1,) F.. x-2yr’)1_jS+y xty F Zx k+y x, y 2 I c) I . . 1 H r — 1 x-y 12. Simplify, a) 3(m—5)(m+2) c) 5(2p—73p--4) e) 3a(2a SbX3a + b) b) 2(x÷yX3x—5y) ci) 4x(x—ly)(2x—3y) 0 3x(2x + — 13. Simplify. a) 2(3x+lXx+5)÷4(2x+3XJx+5) b) 5(2m 4X3m + 2)— 2(4m lX3m —4) c) 3(2x + SyX7x $y) + 5(x ÷ 3y)(2x ÷ 4y) d) 2(xy— 1)(xy÷ t)—5(xy—2)(xy+ 3) e) 3(2a 3bXa + 2b) 2(3a 3)2 ) 2) y+5 y— 3(x 4(x + 1) 2 — — — — — — 14. Simplify. a) (2x—$X3x+6)+(3x—2X4x÷9)—(Sx—3)(2x—7) s 5(3 6) (s+ —2)— 9)— s÷5)(2s 7s— 2(3 + b) 2 3x_7) 2xZ+x )÷(x_4X3 Sx+4X 3 _ c) (2x+ 2 d) (3m+4Xm—4n—i)—(5m—2)(3m—6n—8) ) + 2X4y 5)2 (3y +2 — e) ( y 5)(3y 2 4 1) 5x 3x— 2X f) 2 x+6X x— x÷6)—(2 4(3 ÷ — — C-’ FMPCIO Unit 2: Polynomials Lesson 5: Factoring a GCF 2 (x + y) 2x + this process is called = this process is called = Where the Example 1: Use algebra tiles to factor 2x + outside is the 8. Step I Model the polynomial 2x Step 2 Arrange the tiles into a rectangle. The total area of the tiles represents the product. + — 8. Example 2: Use Algebra Tiles to factor the following (sketch a diagram of solution). a) 3x + 9 b) 4x+1O c) x 2 + 5x 2 + 6x d) 3x GCF for a Polynomial GCF of the coefficients and the lowest power of any variable in every term. Example 2: Find the GCF of the following: a) 12, 18 y 3 , 6x 3 y 2 b) 3x , I Ox, 35x 3 c) I 5x Example 3: Factor a) 12x+18 + x= 5x 2 + 3 3x b) — 60= 24m 2 + 4 36m c) — d) 5x(a—b)+7(a—b)= e) 2m(2x+ 1)—5(2x+ 1)= f) 6a(b—a)+4b(b—a)—7(b—a)= HW: Pg.155#4,7-12,14,16 FMPCIO Unit 2: Polynomials Lesson 6: Factoring Trinomials Part I Example 1: Factor the following using algebra tiles. a) x 2 + 5x + 6 2 + Sx +4 b) x 2 c) x — 5x + 6 +x—6 2 d) x e) x 2 — 3x — 10 Example 2: Factor Completely. +12a+2O= 2 a) a —18m+32= 2 b) m +3n—40 2 c) n —8y—20 2 d) k +16x+14 2 e) 2x 27m 18m + f) 3m -2 3 +l3xy+12y x g) 2 21 10a + h) a -’- 2 4 ) +6(x+y)+8 2 (x+y) j) —4(x+2y)—12 2 (x-i-2y) HW: Pg. 166#4,6,11,14,17,19-21 FMPIO Unit 2: Polynomials Lesson 7: Factoring Trinomials Part 2 Example 1: Factor the following. 2 a) 2x + 7x +6 +2x—3 2 b) 8x +9x+4 2 c) 2x +lOx+3 2 d) 8x 1. Multiply the outside coefficients together. 2. Find two numbers that multiply to this product and add to the middle coefficient. 3. Set up brackets with the first coefficient in the front position of both sets and the two numbers that you found in the last position. 4. Divide any common factors out of each set of brackets. 5. Check by expanding 13x—1O 3x — e) 2 Example 2: Factor Completely. 26a 20a 2 + 3 6a a) — —l7xy—15y 4x y b) 2 +25xy—4y 21x c) 2 2 d) 4x — 2lxy — 2 1 8y = HW: Pg. 177 #12,13, 15, 18,19 FMPIO Unit 2 Polynomials Lesson 8: Factoring a Difference of Squares Expand the following: (x+ 3)(x—3) (x + 2) (x —2) = (3x—5)(3x+ 5)= What’s the pattern??????????????????????????????????????????? To factor we will use this pattern and work backwards Example 1: Factor the foNowing —16 2 b)81m —9 2 a)x 2 c) 1 6m 3 e) 1 2x — — 1 21n 2 27x d) 6x 2 — f) 63x y 2 150 — g) (5m h) x 4 i) Y 4 — — — 2)2 —25 2 + 36 13x 2 5y — 36 HW: Pg.194#6, 7, 10-13, 20, 21 2.1 Multiplying & Dividing Monomials Worksheet Key La)35x’ b)l2tFc)—54m’ d)10n 3 e)56 O—28b 4 g$t’ h)72p’ 2.a)1$xy b)32pqc)35mn d)14a6 e)—45A? fl-44cd 2)63213 bc’ 3s)-Sab’ 7 c)2:ia’b d)24jPq e)24x n 5 b)-12rn y’ f)—6a 6 b 4 4.a)4x’ b)9rn c)—9a’ 4)46 e)4cP f)4n 2 g)86 4 5a)2r432 4 2 b)10p b)—3x’ c4p’q d)2a’b e)—$m’ f)6x5t’ 6.a)54x” b)—12a’°b c$Ss’°s’ 3 e)-24mn’ f)675xyt4 7a)&’y d)—lOOp’q 3 4 e)—16rn’n’ fla’ b)—6? c4a263 d)2x b” 3 2.2 Adding and Subtracting Monomials Worksheet Key tsci tcc.1 . K ey. ‘J ÷l 1oYO1—o— rnp 3 1.fl÷4bnÜE— 4 3m + 2 — 4x fl—5k + 11, 2.a11n$ )—3Z I7y i+ b)4d+4d+3aC — 3 0ic2 — Sr ÷ 5 — 18 — 189 — 1St — I e)Sd 30 000 1,1547 500; 3125 000; 5280 0001 3a)P= 15.Sn 4,a)1(le — 6x& third b)p’q’ 3p + Zq; fourth 2,9 + 2n;sccond d)3;zero - 3m e)—3xf + 2xy third LaWh’ Sx ÷ 16 b)9z’—2t+1 4s)2fl—7Xy+52Y’ - 2; second 6,wz + 7aut 7.s)-3x b)4mW ; fourth 2 6xy b)3m’; second c)-Sfl + 7zy 8.Answers fourth ; 1 2b 2ab’ 2a’b d)2d9 may vary. — — — — — - - - - - 2.3 Multiplying A Monomial and a Polynomial Worksheet Key Eerdses 3-4, page 85 2 i.a)2C1t+40 b)14a—35 c)lók-24k 63m +27 2 e)45m 108 + 36b 2 d)24b 15p €21 2a)3x + 19 b)24 5a eflO 2y fl24 12p fl4x 21y 4)28m —33 e)—13 1 — 6pq 2 e)12p 2 48x b)6a 2hz 3.a)60x 3 3 f)—5’—40x n +42rn 4 d)135n’—90n e)21m 4s)Sx —6 b)-x —3 c)42b 36c dN6rn 5Th ÷14 3 + Slp’q —27a c)4p 4 b)—2a 6 y3 2 5.t)9x’ + 13x —1) 6.2n(n 80a’ :d>..34a’ + 66a 6 3 2 y 3 3 + 3x 3 b)3x’y 2 24261_ 2ab b 3 7.sfl2a 7 +2y 2 d$x n 3 2 n’ Sm’,? 15m 2 c)Sm 2b She --29+ 3 e)2b c 2 3 -lx/ fly Zx’y 2 8a)66 b)Z’ f)7x 6 72 + iSa; third b)21 mit’ 33m’n; thir: 3 9s)8a rd +21s 38s;thi d)43s’ — y; third 2 2 c)lxy’- iSx y 53vtbird 2 3 14x e)5x f)SSxy 15,2 + 2x’; second 2 c)40x 2 + 30x iO.a)99ê + 27a b)1Ox :6x d)—20a’ 8a’ + 12a c)3.6n’ 8Air + 15x ils)29p— i8q+29 2 fllOx’—30x b)—29k—41—75 c)3x’+Sxy—9x—29— i4y y—2x’ 2 d)Sa”- lOOa e)45x’—8x n—m’—94mn 12.a)a+5b b)lOa÷4b 2 f)30m c)a’÷b’ d)a’—a’b—ah’ —6’ 134 =2icrr÷n) — IGn d)3&+ 14n 2 2 b$& c)8xr 14s)911 cm — — — — — — — — — — — — — — — — — - - - — — — — — — — — 2.4 Multiplying Polynomials Worksheet Key Key: n —2 7rm b)30 — )8x 14x+3 2 2 I.a + 4 e)16t 12t—40 — 49 2 d)9x — c 15 2 22c+ c)8 — 2 2 ÷ 2xy + 2 b)x 2.a)g + 2gh + h f)24x 62x + 14 2 2 q c +n ÷ ÷ b p q n c m p ) b ) m ) 2 2 2 c + d + e — 1 2 2 2uv + 2 2sf + 12 h)u 2 2k! + j2 g)s f)k 5y 2 + lOxy + 2 2 b)x 3a)9x + 6xy + y 2 d)25x 90x + 81 c)9a + 1 2a + 4 2 2 8 121 1 + + f) 9 6 y 9 8 rn 6+4 56m e)1 — 2 2 g)25r 1001 + 100 h)25 ÷ 60b + 36b 2 y b x a ÷ 6 5 — ) y b a 1 x a . ) . S 42 + b + 2 2 y+ 12y )x 7x d ÷ x 2 y-4y )6 5x c + 2 2 f)18x 48xy + 14y 2 2 e)35m I9mn + 2n 2 2 b)4m 28mn + 49n 2 2 5.a)9a + 3Oab +4225b 2 2 d)16p 24pq + 9q 2 c)36s 24sf + 2 2512 f)9s + 30s1 + 2 2 e)64x 48xy + 9y 2 2 70y + 49z 1 z h)25y + 2 2 4 g)25f —4Ofg + 6g 2 6.a)x —y b)4m —25n c)81a —16b f)144m 81 2 2 2 2 e)49p 4q d)36x 4y 2 c)12m 26m + 36 b)21x 18x 2 7a)3x 8x I 2 2 y x xy+7 269 f) — 5lab+2b 2 18a 2 e)—• d)6cd 2 2 b)—3s l3st 1Ir ÷ 8a)7x lix— 1 2 — 2 d)5m ÷ lllmn 131,12 e)—4Oxy 2 2 c)3x + 4xy 5y 2 2 I 5x + 4 — 19 9.a )6x 4 7x 2 f)—7x 1 9x 4 b)4m —19m +33m-r36c)6a +a —58a÷45 2 128x 160 9)aJEx + 2x 2 6p + 4 3 d)15p 8p 3 O x x 3 ÷2 4 6 x 2 -7 ) — 3 6 2 p p 12 8 0 — 1 4 2 9p ) 30 b — 3 ÷ 2 —235a + 228a —63 e)50a 2 ÷3x 88x —80 3 — d)18x 2 3 8 11a)iOx+2y; m 0rn — 5 5 2 m 1 0 1 6 f) — 3 + 2 2 2 + l4xy + 2y 2 + 2xy 4$ b)14x + 6y; lOx 4x m )330 .,a— 129m — x 2 20 2 x+ 8;1 138 + c)16x+ 2 c)30p 145p + 140 2 2 b)6x 4xy 10y 2 15ab 39a 2 b e)18a 2 84xy 3 68x + 2 y d)8x 2 3 48xy 48x + 2 y f)12x + 2 3 8 rn 2m--4 b)6 — 13a)30x 108x+70 2 + 2 d)—3x 5xy + 28 y c)52x + IOlxy 609 2 2 f)7x l4xy+91 + y l5ab—20b 2 e)—12a 2 ÷ 2 b}-4s 39s 11 14..a)8x + 57x 69 2 2 2 26x + 40 c)8x 6x 3 d)—12m ISmn ÷47m —28n—20 ÷ 2 2 + 98x 54 f)42x 70x 2 39y 70 3 e)— 1 2$ + 91 v b)3m + 16m + 28 15a)m + tim + 26 2 2 2 16a)4a + 4ab + 4b 2 + 6m 5 2 c)rn + 5m 3 2 c)8a ÷ 6ab ÷ 2b 2 2 b)—5a + l2ab 3b 2 — — — — — — — — — — — — — — — — — — - — — -- — — — — — — • — — — — — — — — — — — — — — — — — — — — ID:A Polynomials Review Answer Section MULTIPLE CHOICE SHORT ANSWER 1. B 2. A 3. B 4. B 5. A 6. C 7. C 8.A 9. 10. 11. 30. (s—32)(s---l) 31. 7(2z—5)(z—l) 27 + 3 + 2 6Z 102 0 +1 z z 32. 2 33. (7s+8t)(7S—8t) ) 9 8(z—5)(z— 35. =4(7x—2y)(7x+2Y) D C 36. The outer rectangle area = 6 y 9 ( y )( ) The inner rectangle has area 13. B = 2 54y (5y)(3y) = 2 15y b) The total area of the shaded region is the difference in the areas of the rectangles: 14. C 54 — = 2 39y 15y y 15. 17 18. 19. 20. 21. 22. a) B A D B B 24. D 25.A 26. B 27. B 28. B 29. B 37. 2 a)6 — llm+3 m a) 4y —25 c) 2 2 +l3xy+6y d) 2 6x — 4 2a — 10 a e) 8x —16x+4 2 2 —6p+4 g) —22m h) —6m f) 2p 22 —5mn+9m+4n+2n i) lOx 2 —llx+3 j) 9x 2 —49 k) 32x +16x+2 1) 2p 2 —6p+4 m) 6x+20y 2 38. a) (x+4)(x+3) b) (m—5)(m+2) c) 2 (2k÷l) d) (2p—3) 2 e) 2 (6x— ) ) (6x+5y f) 2 (x—2)(x+2)(x +4) g) 5(2x—3) 2 h) (—x—1)(3x+1) i) (m—3n)(3m+4n) j) (x+2)(5x—1) k) (x—S)(x—4) 1) (2x—3)(3x+4) m) (x+3) 2 n) (m—9)(m+2) o) (6k+1) 2 2 —6p+8) q) 2 p) 2(p (3x—2y)(3x+2y)(9x +2y ) r) (x-13)(x+13) s) (x—2)(4x—7) t) —4(y—l)(2y 2 u) not factorable (prime) v) (x + 3)(x —4— Sy) w) (x y 7)(x y + 2) — 4 — — ID:A Date: Class: Name: U2 Polynomials Review Multiple Choice Identjfr the choice that best completes the statement or answers the question. 1. Simplify the expression , then factor. 6 2 —24y—2 2 +8y—6—9y y a. 2y—4) —8(y — 2 b. 2y+4) —8(y + 2 c. 4y+8) —4(2y + 2 d. 4y+1) —4(2y + 2 2. Expand and simplify: (p a. —4p—21 2 p b. —lOp—21 2 p c. lOp—21 p + 2 d. 4p—21 p + 2 + 7. Expand and simplify: (5m a. b. c. d. — 2 3n) —9n 2 25m —lSmn+9n 25m 2 2 2 —3Omn+9n 25m +9n 25m 2 8. Each shape is a rectangle. Write a polynomial, in simplified form, to represent the area of the shaded region. (p —7) )3 3. Expand and simplify: (6p + 3)(5p —6) a. 21p—18 30p + 2 b. 21p—18 30p — 2 c. 51p—18 30p + 2 d. 51p—18 30p — 2 a. b. c. d. 4. Expand and simplify: (3c + 2)(2c —7) + 3(—2c + 1)(7c —5) a. b. c. d. 8c—29 —36c + 2 +34c—29 2 —36c —8c—19 2 —36c —8c—29 2 —36c 31x+66 5x + 2 +37x+30 2 5x +31x+30 2 5x +37x+66 2 5x 9. Which polynomial, written in simplified form, represents the area of this rectangle? 8x 2 2 + 5x 6)(5x 5. Expand and simplify: (2x 2 +27x—18 3 —34x 4 +21x a. lOx 34x 3x+18 +21x 4 10x — 3 — b. 2 2 +27x+ 18 3 —24x 4 +21x c. lOx 3 —29x 2 +27x— 18 —34x 4 d. lOx — 2 6. Expand and simplify: (8h + 3)(7h 2 —20h+3 3 —53h a. 56h 12h+3 ÷11h 3 56h — b. 2 4h+3 11h — 3 56h — c. 2 32h 8h+3 — 3 56h + d. 2 — — — 4y x + 5y 2x + 3) 4h + 1) 1 a. —36xy—20y 2 8x b. +22xy—20y 2 8x c. +72xy—40y 2 16x d. +36xy—20y 2 8x ID:A Name: )=k Dk+135 (k—D)(k—5 — 17. Complete. 2 2)=k 5k+135 (k—27)(k—2 — a. 2 . 2 10. Factor the binomial 44a + 99a a. a(44+99a) b. c. d. 11(4a+9a ) 2 lla(4+9a) 22a(2+9a) c. )=k 32k+135 2 (k—27)(k—5 — 2)=k 5k÷135 (k—27)(k—3 — 2 d. )=k 22k+135 2 (k-.27)(k—5 — b. 2 + 99b + 77. 11. Factor the trinomial —33b —9b+7) 2 a. —11(3b b. 3b—7) —33(b — 2 c. 9b--7) —11(3b — 2 d. 27b÷7) 33(—b + 2 2 2d 3 d 40c 12. Factor the trinomial —24c ) 2 2 5cd—4d a. —8cd(3c — 2 14n —105 18. Factor: 7n a. 7(n+3)(n—5) b. 7(n+15)(n—1) c. 7(n—15)(n+1) d. 7(n—3)(n+5) — — 19. Which multiplication sentence does this set of algebra tiles represent? . 3 32cd — b. ) 2 2 +5cd+4d 8cd(3c c. ) 2 2 +5cd+4d 8cd(—3c d. ) 2 2 +5cd+4d —8cd(3c 13. Identify the greatest common factor of the terms in 42 34 t 15s 23 the trmomial 6s t + 1 2s t 22 a. 6st t 2 b. 3s 3 t 2 c. 3s 2 t 3 d. 3s — +9t—36 2 14. Factor: t a. (t—2)(t+ 18) b. (t+2)Q—18) c. (t+12)(t—3) d. (t—12)Q÷3) 15. Factor: —84+8z+z a. (42+z)(—2+z) b. (—6+z)(14+z) c. (—42+z)(2+z) d. (6+z)(—14+z) a. (2x—2)(2x+2) b. (2+2)(2÷2) c. d. (2x-f-2)(2x+2) 2 ÷ 58x + 16 20. Factor: 25x a. (25x+4)(x+4) b. (25x+8)(x+2) c. (5x+4)(5x+4) d. (5x+8)(5x+2) 2 2 ll6y+6O 21. Factor: 48y a. (l6y—l2)(3y—5) b. 4(4y—3)(3y—S) c. d. 4(4.y+3)(3y+5) — 2 28d + 240 16. Factor: —4d a. —4(d + 3)(d 20) b. —4(d+5)(d—12) c. —4(d—3)(d+20) d. —4(d—5)(d+12) — — 2 ID:A Name: 27. Determine the area of the shaded region in factored form. 2 + 324w —42 22. Factor: 96w a. 6(8w+1)(2w—7) b. 6(8w+7)(2w—1) c. 6(8w—7)(2w+1) d. 6(8w—1)(2w+7) +llOa+25 2 23. Factor: 121a a. (lla+5)(lla—5) b. (121a+5)(a+5) c. d. 2 (ha—S) 2 (lla+5) a. b. c. d. —81q 16p 24. Factor: 2 2 a. (4p—9q) b. c. d. 2 (4p+9q) (16p—9q)(p—9q) (4p+9q)(4p—9q) 4(x+12) (3x+2)(x+12) (3x+12)(x+2) (3x—2)(x—12) 2 +k+1 be 28. For which values of k can 6x factored? 768z 4 2 25. Factor: 3z (z+ 16)(z— 16) 2 a. 3z (z+ 16)2 2 b. 3z — a. , 7 only z+48)(z—16) (z 2 b. ±5, ±7 only c. d. (z—16) 2 3z c. -5, -7 only d. all integers between -7 and 5, inclusive 26. Factor Completely: 162 )(18—w (9—w ) a. 2 — 4 2w b. (3+w)(3—w) 2(9+w ) 2 c. ) 2 2(9—w d. ) 2 2(9+w 29. Which of the following is a factor of the 2 + 2x —8? polynomial 3x a. b. c. d. 3x+2 3x-4 3x+4 x-2 Written 30. Factor: 2 S 34. Factor. Check by expanding. 2 112z+ 360 8z —33s+32 — 49z+35 14z — 31. Factor: 2 2 32. Expand and simplify: (9z 2 33. Factor: 49s — 35. Factor. — 2 196x 2z + 10)(3z + 12) 2 64t 3 — 2 16y ID:A Name: 36. The diagram below shows one rectangle inside another. a) Determine the area of each rectangle. b) Determine the area of the shaded region. 38. Factor Completely +7x+12 2 a) x -3m-1O 2 6) m +4k+1 2 c) 4k —12p+9 2 d) 4p e) —25y 2 36x 4 f) x”—16 20x + 2 60x+45 2 6) x2_(2x+1) g) 9 37. Simplify the following: j) k) a) (2m—3)(3m—1) 6) (2y—5)(2y+5) c) (2x+3y)(3x+2y) (a2 +2)(2a2 m) n) o) 5) e) 2 4(2x—1) I) 2(p —1) (p —2) g) 5(—2m--3n)—3(4m—5n) 6) —3m (2m + n —3)— 2n (m 9 — p) q) —169 2 r) x —15x+14 2 s) 4x n —2) t) (3x+7)(3x—7) 2(4x+1) 1) 2(p—1)(p—2) 2 y2_(3y_2) —l8mn—8n 9m u) 2 v) x(x+3)—4(x+3)+5y(x+3) (5x—3)(2x—1) ) 2 3m —5mn—12n 2 +9x—2 2 5x x(x—5)—4(x—5) —x—12 2 6x +6x+9 2 x —7x—18 2 m +12k+1 2 36k —12p+16 2 2p —16y 81x 4 —5(x—y)—14 2 w) (x—y) m) —3(2x—4y)+4(3x+2y) 4 ID:A Polynomials Review Answer Section MULTIPLE CHOICE 1. B 2.A 3. B 4. B 5.A 6. C 7. C 8.A 9.D 10. C 11. C 12.D 13. B 14. C 15. B 16.D 17. B 18.A 19.D 20. B 21. B 22.D 23.D 24.D 25.A 26. B 27. B 28. B 29. B SHORT ANSWER 30. (s—32)(s—1) 31, 7(2z—5)(z—1) 2 +6z+ 120 3 + 102z 32. 27z 33. (7s+8t)(7s—8t) 34. 8(z—5)(z—9) 35. =4(7x—2y)(7x+2y) ID:A 36. a) The outer rectangle area = (9y)(6y) The inner rectangle has area = = 2 54y (5y)(3y) = 2 15y b) The total area of the shaded region is the difference in the areas of the rectangles: 2 —15y =39y 54y 2 37. 2 —16x+4 4 —a 2 —10 e) 8x 2 +l3xy+6y 2 d) 2a 2 —25 c) 6x a) 6m 2 —llm+3 a) 4y —49 2 2 —llx+3 j) 9x —5mn+9m+4n+2n i) lOx —6m f) 2p —6p+4 g) —22m h) 2 2 —6p+4 m) 6x+20y 2 +16x+2 1) 2p 2 k) 32x )(6x+5y (6x—5y ) 2 e) 2 (2k+l) d) (2p—3) a) (x+4)(x+3) b) (m—5)(m+2) c) 2 2 h) (—x—1)(3x+l) i) (m—3n)(3m+4n) j) (x+2)(5x—l) 2 +4) g) 5(2x—3) f) (x—2)(x+2)(x 38. (6k+l) 2 n) (m—9)(m+2) o) 2 k) (x—5)(x—4) 1) (2x—3)(3x+4) m) (x+3) y—l) 2 ) r) (x-13)(x+13) s) (x—2)(4x—7) t) —4(y—l)( 2 2 +2y 2 —6p+ ) q) (3x—2y)(3x+2y)(9x 8 p) 2(p u) not factorable (prime) v) (x+3)(x—4—5y) w) (x—y—7)(x--y+2) 2
© Copyright 2026 Paperzz