7.1/7.2i Notes 2011 n-th Roots and Rational Exponents Properties of Rational Exponents & Important Numbers Exponent Rules Review a m a am an n (ab) m a m a b (a m ) n Jedi create light, but the Sith do not create darkness. They merely use the darkness that is always there. am bm am bm 1 m a a0 m Examples: In this lesson we will extend the concept of square roots to other types of roots. Our goal will be to evaluate nth roots of real numbers using both radical notation and rational (fractional) exponent notation. a. c. 25 3 27 1 2 25 = b. 3 8 d. 5 32 8 1 3 x 1 x 2 x 3 x 4 x 5 x 6 x 7 x 8 x 9 x 10 x 1 1 2 3 4 5 6 7 8 9 10 2 1 4 9 16 25 36 49 64 81 100 3 1 8 27 64 125 216 343 512 729 1000 4 1 16 81 256 625 1296 2401 4096 6561 10000 5 1 32 243 1024 3125 7776 16807 32768 59049 100000 6 1 64 729 4096 15625 46656 117649 262144 531441 1000000 7 1 128 2187 16384 78125 279936 823543 2097152 4782969 10000000 8 1 256 6561 65536 390625 1679616 5764801 16777216 43046721 100000000 9 1 512 19683 262144 1953125 10077696 40353607 134217728 387420489 1000000000 10 1 1024 59049 1048576 9765625 60466176 282475249 1073741824 3486784401 10000000000 Find the indicated real nth root(s): Example 1: a) 5 d) 729 6 b) 1024 4 81 1 e) 7776 Example 2 Translate to radical form: 4 a) 53 4 10 b) c) 7 9 13 3 d) ( 2) c) 36 2 2 5 Example 3 Simplify the following 3 c) d) e) 3 125 2 4 3 4 7 ( 16 ) ( 81 ) 7 f) ( 2097152 ) 7 128 1 1 4 More complicated rational exponents: Translate to fractional form: c) d) e) 25 5 2 ( 64 ) 5 3 Using properties of rational exponents Example 4 a. 5 1 4 5 3 4 b. 1 3 (3 ) 2 5 c. 1 2 80 1 16 2 3 d. 2 1 4 8 1 4 e. 12 5 12 g. 3 (x ) 1 2 h. (4 3 f. 1 5 3 2 ) 13 i. x 1 2 x 181 4 91 4 1 5 3
© Copyright 2026 Paperzz