MATH1014 Tutorial 4 Integration by Parts ˆ ˆ u(x)v 0 (x) dx = u(x)v(x) − • For indefinite integrals, ˆ ˆ b 0 • For definite integrals, ˆ v(x)u0 (x) dx, or the compact form u(x)v (x) dx = [u(x)v(x)]ba v du. b v(x)u0 (x) dx. − a ˆ u dv = uv − a • Usually we should choose u(x) to be a function that becomes simpler when differentiated, and v 0 (x) to be a function with antiderivative immediately available. ˆ x tan2 x dx. Example 1. Evaluate First we rewrite tan2 x as sec2 x − 1, since sec2 x has a readily available antiderivative. Thus ˆ ˆ x tan2 x dx = x(sec2 x − 1) dx ˆ ˆ 2 = x sec x dx − x dx ˆ x2 = x d tan x − 2 ˆ 2 x = x tan x − − tan x dx 2 x2 = x tan x − + ln | cos x| + C. 2 ˆ √ 3 tan−1 Example 2. Evaluate 1 1 dx. x Applying integration by parts directly, we get ˆ √ 3 tan −1 1 √3 ˆ √3 1 1 −1 1 − x d tan−1 dx = x tan x x 1 x 1 ˆ √3 √ x 1 = 3 tan−1 √ − tan−1 1 + dx 2 x +1 3 1 √ ˆ √3 3π π 1 d(x2 + 1) = − + 6 4 2 1 x2 + 1 √ √3 3π π 1 = − + ln |x2 + 1| 1 4 2 √6 3π π ln 2 = − + . 6 4 2 Prepared by Leung Ho Ming Homepage: http://ihome.ust.hk/~malhm 1 Example 3. For a 6= 0, derive the reduction formulas ˆ ˆ ˆ ˆ xn sin ax n xn cos ax n n n−1 n x cos ax dx = x xn−1 cos ax dx. − sin ax dx and x sin ax dx = − + a a a a ˆ Hence evaluate x3 sin 2x dx. Using integration by parts, ˆ ˆ 1 n xn d sin ax x cos ax dx = a ˆ xn sin ax 1 = sin ax dxn − a a ˆ xn sin ax n xn−1 sin ax dx, = − a a ˆ ˆ 1 xn d cos ax x sin ax dx = − a ˆ xn cos ax 1 =− cos ax dxn + a a ˆ xn cos ax n xn−1 cos ax dx. =− + a a n and Hence ˆ x3 cos 2x 3 + x2 cos 2x dx 2 2 ˆ x3 cos 2x 3 x2 sin 2x 2 x sin 2x dx =− + − 2 2 2 2 ˆ x3 cos 2x 3 x2 sin 2x x cos 2x 1 =− + − − + cos 2x dx 2 2 2 2 2 x3 cos 2x 3x2 sin 2x 3x cos 2x 3 + + − sin 2x + C. =− 2 4 4 8 ˆ 1 Example 4. Let In denote the integral (1 − x2 )n dx, where n ≥ 1 is a positive integer. Show that In = ˆ x3 sin 2x dx = − 0 22n (n!)2 , where n! = 1 · 2 · 3 · · · (n − 1) · n is the factorial of n. then deduce that In = (2n + 1)! Using integration by parts, ˆ 1 ˆ 1 In = (1 − x2 )n dx = [x(1 − x2 )n ]10 − x d(1 − x2 )n 0 ˆ 0 1 (−x2 )(1 − x2 )n−1 dx = −2n 0 ˆ 1 (1 − x2 − 1)(1 − x2 )n−1 dx = −2n 0 = −2n(In − In−1 ) = 2nIn−1 − 2nIn . 2n In−1 . From the starting case I1 = Hence (2n + 1)In = 2nIn , and In = 2n + 1 In = ˆ 1 (1 − x2 ) dx = 0 2n 2n 2n − 2 In−1 = · In−2 2n + 1 2n + 1 2n − 1 2n 2n − 2 4 = · · · · · · I1 2n + 1 2n − 1 5 2n 2n − 2 4 2 = · · ··· · · 2n + 1 2n − 1 5 3 (2n)2 (2n − 2)2 · · · (4)2 (2)2 = (2n + 1)(2n) · · · (5)(4)(3)(2) 22n (n!)2 = . (2n + 1)! 2 2 , 3 2n In−1 , 2n + 1 Trigonometric Integrals ˆ • For integrals in the form sinm x cosn x dx: – If m is odd, split off sin x and use u = cos x. – If n is odd, split off cos x and use u = sin x. – If m and n are both even, use the identities sin2 x = ˆ • For integrals in the form tanm x secn x dx: 1−cos 2x , cos2 2 x= 1+cos 2x , sin x cos x 2 = sin 2x 2 . – If m is odd, split off sec x tan x and use u = sec x. – If n is even, split off sec2 x and use u = tan x. – If ´ m nis even and n is odd, rewrite the even powers of tan x in terms of sec x and use reduction formula of sec x dx. ˆ ˆ ˆ • For integrals in the form sin mx cos nx dx, sin mx sin nx dx or cos mx cos nx dx: – Apply the product-to-sum identities sin A cos B = sin(A−B)+sin(A+B) , sin A sin B 2 ˆ = cos(A−B)−cos(A+B) , cos A cos B 2 = cos(A−B)+cos(A+B) . 2 π/2 sin5 x dx. Example 5. Evaluate 0 Let u = cos x, then ˆ ˆ π/2 0 sin5 x dx = − 0 ˆ (1 − u2 )2 du 1 1 (1 − 2u2 + u4 ) du = 0 1 1 2 = u − u3 + u5 3 5 0 8 = . 15 ˆ π sin2 t cos4 t dt. Example 6. Evaluate 0 Applying identities, we get ˆ ˆ π 2 π 4 sin t cos t dt = 0 0 ˆ = = = = = 1 − cos 2t · 2 1 + cos 2t 2 2 dt 1 π (1 − cos2 2t)(1 + cos 2t) dt 8 0 ˆ 1 π (sin2 2t + sin2 2t cos 2t) dt 8 0 ˆ π ˆ 1 1 − cos 4t 1 π 2 dt + sin 2t d sin 2t 8 2 2 0 0 π 3 π 1 sin 4t sin 2t t− + 16 4 3 0 0 π . 16 3 Example 7. Suppose m and n are positive integers, show that ( ˆ π sin mx sin nx dx = −π If m 6= n, ˆ π sin mx sin nx dx = −π 1 2 ˆ 0, m 6= n . π, m = n π [cos(m − n)x − cos(m + n)x] dx = −π π 1 sin(m − n)x sin(m + n)x − = 0, 2 m−n m+n −π since m + n and m − n are nonzero integers, and sin kπ = 0 for all integers k. If m = n, the integral becomes π ˆ ˆ π 1 sin 2nx 1 π 2 (1 − cos 2nx) dx = sin nx dx = x− = π. 2 −π 2 2n −π −π 4
© Copyright 2026 Paperzz