Ellipses Find the center, vertices, and foci of the ellipse with the given equation. y2 x2 + = 1 1) 100 36 A) Center: (0, 0); Vertices: (-10, 0), (10, 0); Foci: (-8, 0), (8, 0) B) Center: (0, 0); Vertices: (0, -10), (0, 10); Foci: (0, -6), (0, 6) C) Center: (0, 0); Vertices: (-10, 0), (10, 0); Foci: (-6, 0), (6, 0) D) Center: (0, 0); Vertices: (0, -10), (0, 10); Foci: (0, -8), (0, 8) 2) x2 y2 + = 1 16 25 A) Center: (0, 0); Vertices: (-5, 0), (5, 0); Foci: (0, -4), (0, 4) B) Center: (0, 0); Vertices: (0, -5), (0, 5); Foci: (-4, 0), (4, 0) C) Center: (0, 0); Vertices: (0, -5), (0, 5); Foci: (0, -3), (0, 3) D) Center: (0, 0); Vertices: (-5, 0), (5, 0); Foci: (-3, 0), (3, 0) 3) (x + 3)2 (y + 4)2 + = 1 25 9 A) Center: (-3, -4); Vertices: (-4, -8), (-4, 2); Foci: (-4, -7), (-4, 1) B) Center: (-3, -4); Vertices: (-8, -4), (2, -4); Foci: (-6, -4), (0, -4) C) Center: (-3, -4); Vertices: (-4, -8), (-4, 2); Foci: (-4, -6), (-4, 0) D) Center: (-3, -4); Vertices: (-8, -4), (2, -4); Foci: (-7, -4), (1, -4) 4) (x + 2)2 (y + 2)2 + = 1 144 225 A) Center: (-2, -2); Vertices: (-2, -17), (-2, 13); Foci: (-14, -2), (10, -2) B) Center: (-2, -2); Vertices: (-17, -2), (13, -2); Foci: (-2, -14), (-2, 10) C) Center: (-2, -2); Vertices: (-17, -2), (13, -2); Foci: (-11, -2), (7, -2) D) Center: (-2, -2); Vertices: (-2, -17), (-2, 13); Foci: (-2, -11), (-2, 7) 5) 3x2 + 8y2 = 24 A) Center: (0, 0); Vertices: B) Center: (0, 0); Vertices: C) Center: (0, 0); Vertices: D) Center: (0, 0); Vertices: -8, 0 , 8, 0 ; Foci: - 55, 0 , 55, 0 -2 2, 0 , -2 2, 0 ; Foci: - 5, 0 , 5, 0 0, -8 , 0, 8 ; Foci: 0, - 55 , 0, 55 0, -2 2 , 0, -2 2 ; Foci: 0, - 5 , 0, 5 6) 7x2 + 5y2 = 35 A) Center: (0, 0); Vertices: B) Center: (0, 0); Vertices: C) Center: (0, 0); Vertices: D) Center: (0, 0); Vertices: - 7, 0 -7, 0 , 0, - 7 0, -7 , , - 7, 0 ; Foci: - 2, 0 , 2, 0 7, 0 ; Foci: -2 6, 0 , 2 6, 0 , 0, 7 ; Foci: 0, - 2 , 0, 2 0, 7 ; Foci: 0, -2 6 , 0, 2 6 PreCalculus Match the given graph with its equation. 7) y 6 4 2 -8 -6 -4 -2 2 4 6 8 x -2 -4 -6 A) x2 y2 + = 1 25 9 B) x2 y2 + = 1 10 6 C) x2 y2 + = 1 5 3 D) x2 y2 + = 1 9 25 C) y2 x2 + = 1 25 9 D) y2 x2 - = 1 25 9 8) y 6 4 2 -8 -6 -4 -2 2 4 6 8 x -2 -4 -6 A) x2 y2 + = 1 25 9 B) y2 x2 + = 1 10 6 9) y 6 4 2 -8 -6 -4 -2 2 4 6 8 x -2 -4 -6 A) 9x2 + 16y 2 = 144 B) 16x2 - 9y2 = 144 C) 16x2 + 9y2 = 144 Calin M. Agut - 2012 D) 9x2 - 16y 2 = 144 PreCalculus 10) y 4 2 -8 -6 -4 -2 2 4 6 8 x -2 -4 -6 -8 A) (x + 1)2 (y - 3)2 + = 1 4 16 B) (x + 1)2 (y - 3)2 + = 1 16 4 C) (x - 1)2 (y + 3)2 + = 1 4 16 D) (x - 1)2 (y + 3)2 + = 1 4 16 11) y 8 6 4 2 -8 -6 -4 -2 2 4 6 8 x -2 -4 A) (x - 1)2 (y + 3)2 + = 1 4 16 B) (x + 1)2 (y - 3)2 + = 1 4 16 C) (x + 1)2 (y - 3)2 + = 1 4 16 D) (x - 1)2 (y + 3)2 + = 1 16 4 Calin M. Agut - 2012 PreCalculus Graph the ellipse. x2 y2 + = 1 12) 25 9 16 y 12 8 4 -16 -12 -8 -4 8 12 16 x 4 8 12 16 x 4 8 12 16 x 4 -4 -8 -12 -16 13) 25(x + 1)2 + 4(y - 2)2 = 100 16 y 12 8 4 -16 -12 -8 -4 -4 -8 -12 -16 14) 4x2 + 49y2 = 196 16 y 12 8 4 -16 -12 -8 -4 -4 -8 -12 -16 Calin M. Agut - 2012 PreCalculus Find an equation in standard form for the ellipse that satisfies the given conditions. 15) Vertices at (±10, 0) and foci at (±5 , 0) x2 y x y2 x2 y2 A) + = 1 B) + = 2 C) + = 1 100 75 10 75 100 75 16) The vertical major axis is of length 18, and the minor axis is of length 6. x2 y2 x2 y2 x2 y2 A) + = 1 B) + = 1 C) + = 1 81 9 9 3 3 9 17) The horizontal major axis is of length 18, and the minor axis is of length 8. x2 y2 x2 y2 x2 y2 A) + = 1 B) + = 1 C) + = 1 9 4 81 16 4 9 18) Major axis endpoints (0, ±7), minor axis length 4 y2 x2 x2 y2 A) + = 1 B) + = 1 49 4 2 7 19) Minor axis endpoints (±2, 0), major axis length 24 x2 y2 y2 x2 A) + = 1 B) + = 1 144 4 144 4 D) x2 y2 + = 1 5625 10 D) x2 y2 + = 1 9 81 D) x2 y2 + = 1 16 81 C) x2 y2 + = 1 7 2 D) x2 y2 + = 1 49 4 C) x2 y2 + = 1 12 2 D) x2 y2 + = 1 2 12 D) x2 y 2 + = 1 25 4 20) An ellipse with intercepts (±5, 0) and (0, ±2), center at origin x2 y 2 x2 y 2 x2 y 2 A) + = 1 B) + = 1 C) + = 1 5 2 2 5 4 25 Find the eccentricity of the ellipse. 21) x2 + 3y2 = 15 A) 15 10 22) 47x2 + y2 = 47 2162 A) 47 B) 2 3 15 C) 15 12 D) i 2 3 B) 47 4 138 C) 47 46 D) 4 138 47 Calin M. Agut - 2012 Answer Key Testname: 11_ELLIPSES 1) A 2) C 3) D 4) D 5) B 6) C 7) A 8) C 9) C 10) C 11) C 12) 14) 16 12 8 4 -16 -12 -4 4 -8 -12 y -16 12 8 4 -8 -4 4 8 12 16 x 4 8 12 16 x -4 -8 15) C 16) D 17) B 18) A 19) B 20) D 21) D 22) A -12 -16 13) 16 y 12 8 4 -16 -12 -8 -4 16 -16 -12 y -8 -4 -4 -8 -12 -16 Calin M. Agut - 2012 8 12 16 x
© Copyright 2026 Paperzz