Math 125 Practice Problems for Test #3 Also study the assigned homework problems from the book. Donʹt forget to look over Test #1 and Test #2! Find the derivative of the function. 1) Know the derivatives of all of the trigonometric functions. Solve the problem. 16) A certain radioactive isotope decays at a rate of 3% per 100 years. If t represents time in years and y represents the amount of the isotope left, use the condition that y = 0.97y0 Find the derivative of y with respect to x, t, or θ, as appropriate. 2) y = e7 - 9x to find the value of k in the equation y = y0 ekt . 17) In a chemical reaction, the rate at which the amount of a reactant changes with time is proportional to the amount present, such that dy = -0.7y, when t is measured in hours. If dt 3) y = e(10 x + x4 ) 4) y = 8xex - 8ex there are 61 g of reactant present when t = 0, how many grams will be left after 3 hours? Give your answer to the nearest tenth of a gram. 5) y = (x2 - 2x + 5) ex 6) y = 3eθ(sin θ - cos θ) Find the angle. 7) y = sin e-θ7 Find the derivative of y with respect to x, t, or θ, as appropriate. 8) y = ln 7x 22) cos sin-1 1 - x 12 13 (x + 2)4 1 23) sin cos-1 2 1 + x x2 24) sec cos-1 Find the inverse of the function. 14) f(x) = x3 + 7 15) f(x) = 2 2 Evaluate exactly. ln x x6 13) y = ln 19) cos-1 21) sec -1 2 10) y = ln 5x2 12) y = ln 3 2 20) tan-1 -1 9) y = ln (x - 2) 11) y = 18) sin-1 3 2 Find the derivative of the function. 25) Know the derivatives of all of the inverse trigonometric functions. 5 x + 6 1 33) Minimum Find the derivative of y with respect to x. 6x 26) y = tan-1 5 5 h(x) 4 3 27) y = cos-1 (5x2 + 4) 2 1 1 28) y = sin-1 x3 -5 -4 -3 -2 -1 -1 1 2 3 4 5 x -2 29) y = sin-1 (e5t) -3 -4 30) y = tan-1 7x -5 Find the location of the indicated absolute extremum for the function. 31) Minimum Find the absolute extreme values of each function on the interval. 34) f(x) = 2x - 3; -2 ≤ x ≤ 4 f(x) 6 5 35) f(x) = sin x + 4 7π π , 0 ≤ x ≤ 4 2 3 Find the derivative at each critical point and determine the local extreme values. 36) y = x2/3(x2 - 4); x ≥ 0 2 1 -7 -6 -5 -4 -3 -2 -1 1 -1 2 3 4 5 37) y = x(1 - x2 ) -2 -3 38) y = x2 16 - x -4 -5 -6 Determine whether the function satisfies the hypotheses of the Mean Value Theorem for the given interval. 39) f(x) = x1/3, -1,1 32) Maximum g(x) 5 40) g(x) = x3/4, 0,3 41) s(t) = t(1 - t), -1,5 4 3 2 1 -6 -5 -4 -3 -2 -1 -1 1 2 3 4 5 Find any relative extrema for the function. 42) f(x) = 0.1x3 -15x2 + 8x - 10 6 -2 43) f(x) = 0.1x4 - x3 - 15x2 + 59x + 14 -3 -4 44) f(x) = x4 - 3x3 - 21x2 + 74x - 87 -5 2 Determine the location of each local extremum of the function. 45) f(x) = -x3 - 4.5x2 - 6x + 2 Determine the intervals where f is concave up or concave down. Find the x-coordinate of the point of inflection. 53) f(x)=x2 -2x+5 46) f(x) = x3 - 12x2 + 48x - 2 54) f(x)=x3 -9x2 +2 55) f(x)=x4 -4x3 +10 Find the critical numbers of f. Determine the intervals on which f is increasing or decreasing and find the local extrema. 47) f(x)=x2 -x-2 Find the Horizontal and Veritcal asymptotes, if any. x 56) f(x) = x + 3 48) f(x)=2x3 +3x2 +4 57) f(x) = 49) f(x)=x3 +6x2 +12x+1 Find a function that satisfies the given conditions and sketch its graph. 58) lim f(x) = 0, lim f(x) = ∞, lim f(x) = ∞. x→±∞ x→3 + x→3 - 50) f(x)=3x4 -12x3 +5 Use the graph of the function f(x) to locate the local extrema and identify the intervals where the function is concave up and concave down. 51) 10 x 2 x + x + 2 10 8 y 6 4 y 2 5 -10 -8 -6 -4 -2-2 2 4 6 8 10 x -4 -6 -10 -5 5 10 x -8 -10 -5 59) -10 lim g(x) = -4, lim g(x) = 4, lim g(x) = x→-∞ x→∞ x→0 + 4, lim g(x) = -4. x→0 - 52) 10 10 y 8 6 4 2 5 -10 -5 y 5 -10 -8 -6 -4 -2 -2 -4 10 x -6 -8 -5 -10 -10 3 2 4 6 8 10 x 63) f(x) = x1/3(x2 - 175) Sketch the graph and show all local extrema and inflection points. 60) f(x) = 4x2 + 24x 200 y y 100 x -10 -5 5 10 x -100 -200 64) f(x) = 61) f(x) = 16x x2 + 16 x2 x2 + 10 y y x x 65) f(x) = x + cos 2x, 0 ≤ x ≤ π y 62) f(x) = 2x 3 - 15x2 + 24x 4 y 3 2 x 1 1 -1 Solve the problem. 4 2 3 x 66) Using the following properties of a twice-differentiable function y = f(x), select a possible graph of f. D) 24 y 16 x y x < 2 11 -2 -2 < x < 0 0 -5 0 < x < 2 2 -21 x > 2 Derivatives y′ > 0,y′′ < 0 y′ = 0,y′′ < 0 y′ < 0,y′′ < 0 y′ < 0,y′′ = 0 y′ < 0,y′′ > 0 y′ = 0,y′′ > 0 y′ > 0,y′′ > 0 8 -4 -3 -2 -1 -8 8 1 2 3 4 68) A company is constructing an open-top, square-based, rectangular metal tank that will have a volume of 51 ft 3 . What dimensions -24 yield the minimum surface area? Round to the nearest tenth, if necessary. B) y 69) Find two numbers whose difference is 100 and whose product is a minimum. 16 8 -4 -3 -2 -1 -8 1 2 3 4 70) Find two positive numbers whose product is 100 and whose sum in a minimum. x 71) Find a positive number such that the sum of the number and its reciprocal is as small as possible. -16 -24 C) Solve the problem. 72) A rectangular field is to be enclosed on four sides with a fence. Fencing costs $5 per foot for two opposite sides, and $7 per foot for the other two sides. Find the dimensions of the field of area 880 ft2 that would be the cheapest y 16 8 -4 -3 -2 -1 -8 x x -16 24 4 67) From a thin piece of cardboard 50 in. by 50 in., square corners are cut out so that the sides can be folded up to make a box. What dimensions will yield a box of maximum volume? What is the maximum volume? Round to the nearest tenth, if necessary. 16 24 3 -24 y -4 -3 -2 -1 -8 2 -16 A) 24 1 1 2 3 4 x to enclose. -16 -24 5 Answer Key Testname: REVIEWT3FALL2008 1) 2) -9e7 - 9x 5 + 4x3 e(10 x + x4 ) 3) x 4) 8xex 5) (x2 + 3) ex 6) 6eθ sin θ 7) (-7θ6 e-θ7 ) cos e-θ7 1 8) x 9) 1 x - 2 10) 2 x 11) 1 - 6ln x x7 12) 3x - 6 (x + 2)(1 - x) 13) -4 - 3 x 2x(1 + x ) 3 14) f-1 (x) = x - 7 -6x + 5 15) f-1 (x) = x 16) -0.00030 17) 7.5 g π 18) 3 19) π 4 20) -π 4 21) π 4 22) 5 13 23) 3 2 24) 2 3 3 25) 26) 30 36x2 + 25 6 Answer Key Testname: REVIEWT3FALL2008 27) 28) -10x 1 - (5x2 + 4)2 -3 x x6 - 1 29) 5 e5t 1 - e10t 30) 7 2(1 + 7x) 7x 31) x = 3 32) x = 0 33) No minimum 34) Maximum value is 5 at x = 4; minimum value is - 7 at x = -2 35) Maximum value of 1 at x = 0; minimum value of -1 at x = π 36) Critical Pt. derivative Extremum Value x = 0 Undefined local max 0 x = 1 0 minimum -3 37) Critical Pt. derivative Extremum Value x = 0.58 0 local max 0.38 x = -0.58 0 local min -0.38 38) Critical Pt. derivative Extremum Value 0 0 min x =0 0 undefined min x = 16 x = 64 5 0 local max 16384 125 5 39) No 40) Yes 41) No 42) Approximate local maximum at 0.267; approximate local minimum at 99.733 43) Approximate local maximum at 1.735; approximate local minima at -6.777 and 12.542 44) Approximate local maximum at 1.604; approximate local minima at -3.089 and 3.735 45) Local maximum at -1; local minimum at -2 46) No local extrema 1 1 1 1 47) , decreasing on -∞ , , increasing on , ∞ , local minimum at 2 2 2 2 48) -1, 0; increasing on -∞ , -1 and 0 , ∞ ; decreasing on -1 , 0 ; local max at -1, local min at 0 49) -2, increasing for all real numbers, no relative extrema 50) 0 , 3; decreasing on (-∞ , 3 ); increasing on (3 , ∞ ); local minimum at 3 51) Local minimum at x = +1; local maximum at x = -1; concave up on (0, ∞); concave down on (-∞, 0) 52) Local minimum at x = 3; local maximum at x = -3 ; concave up on (0, ∞); concave down on (-∞, 0) 7 Answer Key Testname: REVIEWT3FALL2008 53) Concave up for all x; no inflection points 54) Concave up on (3 , ∞) ; Concave down on (-∞ , 3) ; inflection point at 3 55) Concave up on (-∞ , 0) and (2 , ∞) ; Concave down on (0 , 2); inflection points at 0 and 2 56) Asymptotes: x = -3, y = 1 3 y 2 1 -10 -5 5 10 x 5 10 x -1 -2 -3 57) Asymptote: y = 0 2 y 1 -10 -5 -1 -2 58) (Answers may vary.) Possible answer: f(x) = 10 8 1 . x - 3 y 6 4 2 -10 -8 -6 -4 -2-2 2 4 6 8 10 x -4 -6 -8 -10 8 Answer Key Testname: REVIEWT3FALL2008 59) (Answers may vary.) Possible answer: f(x) = 4, x > 0 -4, x < 0 y 10 8 6 4 2 -10 -8 -6 -4 -2-2 2 4 6 8 10 x -4 -6 -8 -10 60) 200 y 100 -10 -5 5 10 x -100 -200 Minimum: (-3,-36) No inflection points 61) Local minimum: (-4,-2) Local maximum: (4,2) Inflection point: (0,0), (-4 3, -4 3),(4 3, 4 3) 6 y 4 2 -4 -2 2 4 x -2 -4 -6 9 Answer Key Testname: REVIEWT3FALL2008 62) Local max: 1,11 , min: 4,-16 5 5 Inflection point: ,- 2 2 y 24 12 -8 -4 4 8 x -12 -24 3 3 63) Local max: -5, 150 5 , min: 5, -150 5 Inflection point: (0,0) 400 y 300 200 100 -20 -10 20 x 10 -100 -200 -300 -400 64) Min: (0,0) Inflection points: - 0.75 30 1 , , 4 3 30 1 , 4 3 y 0.5 0.25 -3 -2 -1 1 2 3 x -0.25 -0.5 -0.75 10 Answer Key Testname: REVIEWT3FALL2008 65) Local minimum: Inflection points: 5π 5π - 6 3 π π + 6 3 , ; local maximum: , 12 12 12 12 π π 3π 3π , and , 4 4 4 4 y 4 3 2 1 1 2 3 x -1 66) A 67) 33.3 in. by 33.3 in. by 8.3 in.; 9259.3 in. 3 68) 4.7 ft by 4.7 ft by 2.3 ft 69) -50 , 50 70) 10 , 10 71) 1 72) 35.1 ft @ $5 by 25.1 ft @ $7 11
© Copyright 2026 Paperzz