NonReal Complex Numbers: The “Standard Form” is a+bi Simplifying Radicals: Always take out a √−𝟏 first Example: Simplify √−75. First step must be √75 ∙ √−1 → √75 𝑖 Then simplify the square root of the positive number: → √25 √3 𝑖 → 5 √3 𝑖. Addition and Subtraction are easy Like Terms problems Example: (5 − 2𝑖 ) − (7 + 6𝑖 ) → 5 − 2𝑖 − 7 − 6𝑖 → −2 − 8𝑖. Multiplication – works as usual, just remember to change 𝒊𝟐 → (−𝟏) and simplify further Distributive Property example: 2𝑖 ∙ (5 + 3𝑖) → 10𝑖 + 6𝑖 2 → 10𝑖 + 6(−1) → 10𝑖 − 6 and say it in standard form, −6 + 10𝑖. FOIL example: (3 + 4𝑖)(5 − 6𝑖) → 15 − 18𝑖 + 20𝑖 − 24𝑖 2 → 15 + 2𝑖 − 24(−1) → 15 + 2𝑖 + 24 → 9 + 2𝑖 Division problems and Rationalize the denominator problems: Don’t leave “i” in the denominator If there’s One Term in Denominator How to do it Multiply top and bottom by 𝒊. 8 𝒊 8i 8𝑖 8𝑖 ∙ → 2→ → 3i 𝒊 3i 3(−1) −3 Example Put your answer in standard form: 8 − 𝑖 3 If there are Two Terms in Denominator Multiply top and bottom by the conjugate of the denominator. Numerator: Distributive Property or FOIL Denominator: Special pattern shortcut! (𝑨 + 𝑩)(𝑨 − 𝑩) → 𝑨𝟐 − 𝑩𝟐 Distributive or FOIL in the top; (𝑎 + 𝑏𝑖)(𝑎 − 𝑏𝑖) → 𝐴2 + 𝐵 2 in bottom; no additional simplification needed. 2 𝟓 − 𝟑𝒊 2(5 − 3𝑖) 2(5 − 3𝑖) 1(5 − 3𝑖) ∙ → → → 5 + 3𝑖 𝟓 − 𝟑𝒊 25 + 9 34 17 1(5 − 3𝑖) 5 3 → − 𝑖 17 17 17 9_i.docx — 4/9/2014 12:20 PM – D.R.S.
© Copyright 2026 Paperzz