CIRCULATING TRANSPORTATION ORBITS BETWEEN EARTH AND M R S . 1 2 Alan L. F r i e d l a n d e r and John C. N i e h o f f Science A p p l i c a t i o n s I n t e r n a t i o n a l C o r p o r a t i o n Schaumburg, I l l i n o i s 3 Dennis V. Byrnes and James M. Longuski J e t Propulsion Laboratory Pasadena, Cal if o r n i a Abstract . s u p p l i e s i n s u p p o r t o f a s u s t a i n e d Manned Mars Sur- T h i s paper d e s c r i b e s t h e b a s i c c h a r a c t e r i s t i c s o f c i r c u l a t i n g ( c y c l i c a l ) o r b i t d e s i g n as a p p l i e d f a c e Base sometime d u r i n g t h e second q u a r t e r o f t h e next century. t o r o u n d - t r i p t r a n s p o r t a t i o n o f crew and m a t e r i a l s A c i r c u l a t i n g o r b i t may be d e f i n e d as a m u l t i - between E a r t h and Mars i n support o f a s u s t a i n e d manned Mars Surface Base. The two main t y p e s o f non-stopover c i r c u l a t i n g t r a j e c t o r i e s a r e t h e socalled VISIT orbits. orbits and Up/Down the Escalator Access t o t h e l a r g e t r a n s p o r t a t i o n f a c i l i - t i e s placed i n t h e s e o r b i t s i s by way o f t a x i v e h i - p l e - a r c t r a j e c t o r y b e t w e e n t w o o r more p l a n e t s (1) does n o t s t o p a t t h e t e r m i n a l s b u t which: rather involves gravity-assist planet; swingbys of each ( 2 ) i s r e p e a t a b l e o r p e r i o d i c i n some sense; and ( 3 ) i s continuous, i.e., t h e process can c l e s u s i n g h y p e r b o l i c rendezvous t e c h n i q u e s d u r i n g be c a r r i e d on i n d e f i n i t e l y . t h e s u c c e s s i v e e n c o u n t e r s w i t h E a r t h and Mars. c i r c u l a t i n g o r b i t s b e t w e e n E a r t h and Mars were 1960s 1 i t e r a t ~ r e . l ' * ' ~ ' ~ Re- S p e c i f i c examples o f r e a l t r a j e c t o r y d a t a a r e pre- identified sented i n e x p l a n a t i o n o f f l i g h t times, examination o f t h i s i n t e r e s t i n g problem d u r i n g t h e frequency, hyperbol i c v e l o c i t i e s , distances, and encounter c l o s e s t approach A V maneuver requirements i n b o t h i n the D i f f e r e n t types o f p a s t y e a r has produced new solution^.^'^'^ p o r a t e Venus encounters i n t h e scenario. i n t e r p l a n e t a r y and p l a n e t o c e n t r i c space. Some i n v o l v e o n l y these two b o d i e s w h i l e o t h e r s i n c o r Some have more o r l e s s d e s i r a b l e c h a r a c t e r i s t i c s as measured by f l i g h t t i m e s , b o l i c approach v e l o c i t i e s , I. I n t r o d u c t i o n tances, The swingby concepts or and principles "gravity-assist" are of planetary science missions gravity-assist Mercury ( M a r i n e r l o ) , we1 1-estaflown of have Venus and t h e Moon ( ISEE-3/ICE), and t h e g i a n t o u t e r p l a n e t s (Voyager). T h i s energy- saving technique can be expected t o see i n c r e a s e d use i n f u t u r e automated and manned i n t e r p l a n e t a r y travel. this The p o t e n t i a1 a p p l i c a t i o n o f i n t e r e s t i n paper is the transportation of crew and closest hyper- approach d i s - and t h e amount o f midcourse p r o p u l s i v e 4 V needed t o a d j u s t and m a i n t a i n t h e o r b i t c o n t i n uousl y A number o f a1 ready swingbys planetary now b l i s h e d i n b o t h t h e o r y and p r a c t i c e . utilized frequency o f encounters, . C i r c u l a t i n g o r b i t s share one p o t e n t i a l advant a g e f o r manned t r a n s p o r t a t i o n between E a r t h and Mars. They a l l o w a l a r g e o r b i t i n g f a c i l i t y ( h e r e i n c a l l e d a "CASTLE") p r o v i d i n g a l l power, l i v i n g and work space, l i f e support, g r a v i t y environment, and s o l a r storm s h e l t e r t o be "once-launched", thereby o b v i a t i n g t h e need t o c a r r y t h e s e massive elements repeated1y t h r o u g h l a r g e p l a n e t o c e n t r i c A V maneuvers. T r a n s p o r t a t i o n t o and from t h e s e CASTLES i s c a r r i e d o u t by small e r Space T a x i s u s i n g hyperbol ic System Analyst, Member AIAA and AAS rendezvous techniques. Department Manager, Member AIAA Consultant, Member AIAA and AAS Member o f Technical S t a f f , Member AIAA T h i s paper w i l l d e s c r i b e t h e b a s i c c h a r a c t e r i s t i c s o f c i r c u l a t i n g o r b i t d e s i g n and s p e c i f i c examples o f r e a l t r a j e c t o r y d a t a t h a t have been gen- T h i s work was performed by SAIC and JPL under JPL C o n t r a c t No. 957404 and NASA C o n t r a c t No's. NAS7918 and NASW-3622. This paper is declared a work of the U.S. Government and is not subject to copyright protection in the United States. e r a t e d i n a r e c e n t study o f t h i s problem.8 The two main t y p e s o f c i r c u l a t i n g o r b i t s having d e s i r a b l e c h a r a c t e r i s t i c s are the so-called VISIT o r b i t s and t h a t t h e connecting h e l i o c e n t r i c o r b i t be n e a r l y t h e Up/Down Escalator o r b i t s . tangent t o t h e planetary o r b i t s , Each o f these candi- i.e., the peri- date o r b i t s w i l l f i r s t be discussed i n terms o f h e l i o n o f t h e t r a n s f e r o r b i t must be near 1.0 t h e i r design p r i n c i p l e s i n t h e approximate model and t h e aphelion near 1.52 AU. AU The o r b i t which world o f c i r c u l ar and cop1 anar p l anetary motion. satisfies With t h i s background, q u a n t i t a t i v e r e s u l t s are then model has a semi-major a x i s o f 1.26 AU and a period t h i s exactly i n t h e c i r c u l a r coplanar presented and compared f o r t h e m u l t i - o r b i t propaga- (P) t i o n s i n t h e actual case o f eccentric and i n c l i n e d quired t h a t the. t r a n s f e r o r b i t be resonant w i t h planet o r b i t s . both Earth and Mars, t h a t i s : Also covered are o r b i t a l analysis o f 1.415 years. t o p i c s r e l a t e d t o t h e use o f the c i r c u l a t i n g t r a n s e.g., p o r t a t i o n mode, Taxi v e h i c l e maneuver re- quirements i n launching t o ( o r b i t i n j e c t i o n ) and separating from ( o r b i t facilities. capture) the circulating The reader i s r e f e r r e d t o a companion paper i n t h e Conference Proceedings which describes t h e o v e r a l l mass performance analysis o f c i r c u 1a t i n g o r b i t s compared t o t r a d i t i o n a l , energy stopover trajectories 9 sustained manned Mars Base. in minimum- support of a I f , i n addition, i t i s re- nP = m and (1) j P = kPM where n, m, j, and k are small integers, then t h e r e are only two p o s s i b i l t i e s . The f i r s t p o s s i b i l i t y (denoted VISIT-1) has a period o f 1.25 years and a semi-major a x i s o f 1.16 four AU. This o r b i t completes r e v o l u t i o n s about the Sun while Earth com- pletes five. I t a1 so completes three r e v o l u t i o n s about t h e Sun while Mars completes two. 4:5 resonance w i t h Earth and 3:2 Hence, t h e resonance w i t h Mars means t h a t Earth encounters w i l l occur once every f i v e years and Mars encounters once every 11. Prelude t o C i r c u l a t i n g O r b i t Design 3.75 E a r t h and Mars r e v o l v e about t h e Sun w i t h orbit periods respectively. of 1.0 year and 1.8808 years, Earth t r a v e l s i n t h e e c l i p t i c plane w i t h an o r b i t e c c e n t r i c i t y o f 0.0168 w h i l e Mars t r a v e l s i n a plane i n c l i n e d by 1.85' t o the ecl i p - t i c w i t h an e c c e n t r i c i t y o f 0.0934. As a help i n understanding the p r o p e r t i e s o f c i r c u l a t i n g o r b i t s , ignore f o r the moment the non-circular, planar motion o f t h e r e a l world. non-co- Additionally, approximate the period o f Mars (PM) by 1.875 years, years. The second possibility (denoted VISIT-2) has a period o f 1.5 years and a semi-major a x i s o f 1.31 AU. This o r b i t completes two revolu- t i o n s about t h e Sun w h i l e Earth completes three. It also completes f i v e revolutions about t h e Sun while Mars completes four. The 2:3 resonance w i t h Earth and 5:4 resonance w i t h Mars means t h a t Earth encounters occur once every t h r e e years while Mars encounters occur once every 7.5 years. I n the c i r - c u l a r coplanar world the VISIT-1 o r b i t must have a p e r i h e l i o n o f l e s s t h a n 1.0 AU and t h e VISIT-2 so t h a t every 15 years Earth makes 15 r e v o l u t i o n s o r b i t must have an aphelion o f greater than 1.52 AU about the Sun while Mars makes exactly e i g h t r e v o l - since t h e i r periods are respectively l e s s than and utions. Since the re1 a t i v e geometry between Earth greater than t h e value o f 1.415 computed above. In and Mars repeats w i t h t h e synodic period o f 1517 = the real world, 2.1429 makes t h e VISIT-1 o r b i t i d e a l f o r encountering Mars years, trajectories connecting re-occur w i t h t h i s period also. metry repeats every 15 years. have important ImpllcatSons them w i l l The i n e r t i a l geoThese r e l a t i o n s h i p s in the design and t h e e c c e n t r i c i t y o f Mars' orbit near i t s p e r i h e l i o n and t h e VISIT-2 o r b i t i d e a l f o r encountering Mars near i t s aphelion. These o r b i t s are i l l u s t r a t e d i n Figure 1. r e p e a t a b i l i t y o f c i r c u l a t i n g o r b i t s between these planets. Due t o t h e resonant c h a r a c t e r i s t i c s o f t h e VISIT o r b i t s w i t h t h e i r Earth and Mars encounters The VISIT type o f c i r c u l a t i n g o r b i t , first they remain f i x e d i n i n e r t i a l space i n t h e c i r c u l a r ~, from consideration proposed by ~ i e h o f f ~ ' evolved coplanar world. o f a class o f t r a j e c t o r i e s which might d i s p l a y low t h e planetary encounters must have only a n e g l i g i - relative velocities b l e e f f e c t on t h e t r a n s f e r t r a j e c t o r y , minals. a t both Earth and Mars t e r - I n order f o r t h i s t o occur i t i s necessary The i m p l i c a t i o n o f t h i s i s t h a t but t h i s implies i n t u r n t h a t the encounters while close on a h e l i o c e n t r i c s c a l e must be d i s t a n t on a p l a n e t o - t h e requirement o f encountering E a r t h and Mars. T h i s leaves o n l y t h e e c c e n t r i c i t y , e, t o be d e t e r - c e n t r i c scale. mined. The orbit, UpIDown Escal a t o r type of c ircula ting From F i g u r e 2, i t i s seen t h a t t h e magnitude , from t h e f i r s t proposed b y ~ l d r i n ~evolved d e s i r e t o have more f r e q u e n t and r e g u l a r encounters o f t h e t r u e anomaly a t E a r t h e n c o u n t e r , w i t h b o t h E a r t h and Mars. e x a c t l y one ha1 f o f t h e r e q u i r e d advance o f p e r i - Since encounter l o c a - t i o n s on a 1517 synodic p e r i o d o r b i t r o t a t e 117 o f h e l i o n , 101 = A 9/2. a c i r c l e per r e v o l u t i o n , a t r u e anomaly o f 25.7" t h e r e e x i s t s a synodic 0, is Thus, E a r t h i s encountered a t and t h e f l y b y changes t h e precession o f t h e l i n e o f apsides equal t o 51.4' t r u e anomaly t o -25.7'. The n e t e f f e c t i s t o r o - p e r o r b i t w h i c h m u s t be accommodated b y e i t h e r t a t e t h e o r b i t by 51.4O. The v a l u e o f t r u e anomaly p r o p u l s i v e maneuvers (which a r e n o t d e s i r a b l e ) or, a t E a r t h encounter s p e c i f i e s t h e f i n a l o r b i t a l t o t h e e x t e n t possible, o f t h e p l a n e t s ( p r i m a r i l y E a r t h s i n c e i t i s more element, e, through t h e c o n i c equation: 2 r = a(1-e )/(l+ecosQ) massive). where by g r a v i t y - a s s i s t swingbys Given t h i s e f f e c t i v e t r a j e c t o r y shaping, b o t h E a r t h and Mars w i l l be encountered sequen- r = 1 AU t i a l l y every 2-1/7 years. The encounter speeds a t a = ( 1 5 / 7 ) ~ / ~ - =1.662 AU 0 = -25.7 both p l a n e t s ( b u t p r i n c i p a l l y Mars), however, w i l l (2) degrees be s i g n i f i c a n t l y h i g h e r t h a n those o f VISIT o r b i t s Solving the quadratic equation i n e gives e = because t h e 2-117 y e a r p e r i o d t r a n s f e r o r b i t has an 0.416. aphelion distance of about 2.32 AU, thereby Having s p e c i f i e d t h e he1 i o c e n t r i c c r o s s i n g t h e o r b i t o f Mars a t steeper (non-tangen- orbit, t i a1 ) angles. t h e c h a r a c t e r i s t i c s o f t h e E a r t h f l y b y can be determined. The 'Up" Earth) (Earth-to-Mars) and "Down" (Mars-to- E s c a l a t o r o r b i t s d e f i n e d here a r e essen- Escalator Figure 3 i l l u s t r a t e s the r o t a t i o n o f t h e h e l i o c e n t i c v e l o c i t y v e c t o r f r o m Tin t o - VoUt r e s u l t i n g i n t h e change i n he1 i o c e n t r i c v e l o - c i t y , A V. t r a n s f e r back, w h i l e t h e reverse i s t r u e f o r t h e The f l i g h t p a t h angle, ,y, i s found as 2 tan Y = (erl(a(1-e ))sin0 (3) S o l v i n g t h i s equation g i v e s y = 7.48 degrees. From "DownH o r b i t . F i g u r e 3 i t i s seen t h a t : t i a l l y m i r r o r images o f each o t h e r . The "Up" o r b i t w i l l have a s h o r t t r a n s f e r t o Mars and a l o n g F i g u r e 2 i l l u s t r a t e s t h e concept o f rotating the orbit. E a r t h a t E l and encounters Mars a t M2 ( f o r t h e "Up" Escalator). When t h e f a c i l i t y crosses t h e E a r t h ' s o r b i t a g a i n a t 2-117 y e a r s l a t e r , E a r t h i s n o t there, b u t i s re-encountered a t E3. (4) A V = 2Vsin r, The c y c l i n g f a c i l i t y leaves where V = Iv. I = ~n c i t y a t Earth, V, I. The h e l i o c e n t r i c v e l o out i s found from t h e energy equa- tion: At E3 E a r t h ' s g r a v i t y r o t a t e s t h e o r b i t so as t o encounter Mars a t M4 w h i l e m a i n t a i n i n g he1 i o c e n t r i c energy. Simi- l a r l y , t h e "Down" E s c a l a t o r i s d e f i n e d by t h e o r b i t from E l t o M2' t o E3 t o M4'. The advance o f t h e p e r i h e l i o n p e r o r b i t i s d e f i n e d as AY = 2n 17 radians. ., F o u r o r b i t a l elements a r e r e q u i r e d t o s p e c i f y an o r b i t i n a plane. - a r e chosen, t h e n U, I f t h e s e t (a, e, and T) For E a r t h VE = (,/r)112 = 29.785 kmls, where u i s t h e g r a v i t a t i o n a l parameter o f t h e Sun, and so V = 35.2 km/s. S u b s t i t u t i n g these values g i v e s A V = 9.17 km/s. Again from F i g u r e 3 t h e asymptotic v e l o c i t y magnitude i s given by V, = ( v 2 + : V 2vvE cosy) 112 - (6) t h e argument o f p e r i a p s i s , can be a r b i t r a r i l y s e t t o zero s i n c e t h e o r b i t s o f E a r t h and Mars a r e c o n c e n t r i c c i r c l e s . The semi- major axis, a, i s determined by t h e synodic period, and t h e t i m e o f p e r i a p s i s , T, w i l l be s p e c i f i e d by S u b s t i t u t i n g g i v e s V, = 6.88 kmls. The f l y b y o f E a r t h t u r n s t h e asymptotic v e l o c i t y v e c t o r by an angle 26. The equation r e l a t i n g t h i s t u r n a n g l e and t h e r a d i u s o f c l o s e s t approach r i s given by: P' 4 Fig. 1 V I S T o r b i t d i a g r a . - Fig. 2 Escalator o r b i t diagram. Fig. 3 Gravity-assist velocity diagraa. 34 2 s i n 6 = 1 / ( 1 + r , V /pE)) (7) P where pE i s the g r a v i t a t i o n a l parameter o f Earth. approach d i s t a n c e s tend t o be f a i r l y l a r g e , par- Since from F i g u r e 3 ticularly relatively weak maintaining the A V = 2V=,sin & (8) a t E a r t h and 3.7 at gravity-assist t o 3.9 Earth, kmlsec a t Mars. indicating requirements for VISIT t y p e o r b i t resonances. Closest T h i s geometry char- s o l v i n g gives r a c t e r i s t i c has somewhat adverse i m p l i c a t i o n s on t h e 2 6 = 83.4'. hyperbolic = 4,221 km, and t h e t u r n angle P Since t h e E a r t h ' s r a d i u s i s 6,371 km, t h e value o f r corresponds t o a f l y b y o f E a r t h P beneath t h e surface. I n o r d e r t o have a p h y s i c a l l y rendezvous t r a j e c t o r y o f t h e outgoing Taxi v e h i c l e s . That i s , a rendezvous A V penalty o f up t o several hundred meters/sec (depending on r e a l i z a b l e f l y b y , t h e c y c l i n g f a c i l i t y must t h e r e - t h e t i m e allowed from Taxi launch t o rendezvous) f o r e perform a p r o p u l s i v e maneuver somewhere on t h e w i l l have t o be accounted f o r t o compensate f o r t h e orbit. A r e l a t i v e l y small maneuver b f about 230 m/sec performed a t a p h e l i o n o f t h e E s c a l a t o r o r b i t non-aligned asymptotes o f t h e CASTLE and Taxi t r a j e c t o r i e s (see Section V). can r o t a t e t h e argument o f p e r i a p s i s by an amount s u f f i c i e n t t o make t h e f l y b y o f E a r t h o c c u r a t The VISIT o r b i t s o l u t i o n i s n o t t o t a l l y unique can be found f o r neigh- i s t h a t e t h e r "free o r b i t s ' 1,000 km above t h e surface; boring variational trajectories. Although other types of circulating orbits Table 2 1 i s t s one such s o l u t i o n having s l i g h t l y d i f f e r e n t encounter have been i d e n t i f i e d , these t y p i c a l 1y have some d a t e s and e n c o u n t e r speeds, b u t v e r y d i f f e r e n t major drawback such as much h i g h e r ,V values a t c l o s e s t approach distances. has therefore reduce t h e E a r t h swingby distance. Earth and/or Mars. This study The aim here was t o focused on t h e VISIT and E s c a l a t o r o r b i t concepts i n t a k i n g t h e necessary n e x t s t e p o f v e r i f y i n g their existence world of and c h a r a c t e r i s t i c s non-ci r c u l a r , i n the real non-coplanar planetary Another important p o i n t i s noted w i t h r e f e r ence t o F i g u r e 4. There i s a r e t r o g r a d e s h i f t o f b o t h E a r t h and Mars encounter l o n g i t u d e s amounting t o about 38' over 20'years. orbits. I f l e f t uncompensated, t h i s d r i f t away from t h e d e s i r e d l o n g i t u d e (e.g., near p e r i h e l i o n a t Mars) w i l l e v e n t u a l l y r e s u l t i n 111. VISIT Orbit Characteristics Optimal t r a j e c t o r y searches using a p o i n t - t o - Therefore, over p o i n t conic model were made f o r several successive extended times, i t w i l l be necessary t o " r e s e t " t h e launch o p p o r t u n i t i e s near t h e end o f t h i s century. o r b i t p e r i o d i c a l l y (perhaps every 15 years o r so) T h i s i s by way o f example v e r i f i c a t i o n o n l y , s i n c e by u t i l i z i n g t h e excess g r a v i t y - a s s i s t c a p a b i l i t y i t became c l e a r t h a t s i m i l a r r e s u l t s would be ob- t a i n e d f o r a l a t e r t i m e p e r i o d i n t h e 21st c e n t u r y when a sustained Mars Base may become a p r a c t i c a l reality. F i g u r e 4 shows a 20-year propagation o f a VISIT-1 o r b i t launched i n 1996. o r b i t " meaning t h a t no midcourse This i s a "free AV i s required o t h e r than n a v i g a t i o n t a r g e t i n g maneuvers which w i l l be necessary t o compensate f o r expected small errors. Table 1 l i s t s t h e key parameters o f t h i s c i r c u l a t i n g o r b i t , namely, t h e h y b e r b o l i c approach - h i g h e r values o f t h e encounter speed. t o m a i n t a i n t h e VISIT o r b i t c h a r a c t e r i s t i c approach speeds and t h e c l o s e s t approach d i s t a n c e s a t E a r t h and Mars swingby. Note t h a t p e r i h e l i o n and aphelion d i s t a n c e s a r e maintained n e a r l y cons t a n t a t a b o u t 0.94 AU and 1.39 AU. Encounter speeds a r e a l s o f a i r l y constant; 4.2 t o 4.5 km/sec t h a t i s a v a i l a b l e from c l o s e r E a r t h swingbys. The nominal encounter t i m e sequence may be i n t e r r u p t e d b r i e f l y during t h i s resetting revolution. extended times, Over t h e Mars encounter l o c a t i o n s w i l l be seen t o o s c i l l a t e o r rock about Mars' p e r i h e l i o n longitude. T r a j e c t o r y runs have been made t o v e r i - f y the a b i l i t y t o reset the orbit. Table 1 VISIT-I Orbit Encounter Conditions Encounter Date 08 23 30 01 22 16 13 06 30 01 May Jan Apr Nov Jul Apr Apr Apr Dec Apr 1996 1998 2001 2001 2005 2006 2009 2011 2012 2016 Approach V, km/sec Closest approach distance planet r a d i i 4.50 (launch) 3.69 4.33 3.71 3.70 4.20 3.72 4.21 3.85 4.45 a Sphere-of-infl uence, 270 Earth r a d i i Table 2 VISIT-1 Orbit Encounter Conditions ( v a r i a t i o n ) Encounter Date 08 05 21 28 20 13 18 06 30 06 May Jan Mar Oct Jun Apr Apr Apr Dec Apr 1996 1998 2001 2001 2005 2006 2009 2011 2012 2016 Approach V, km/sec 4.76 4.04 4.20 4.07 4.08 4.45 3.77 4.24 3.84 4.45 (launch) Closest approach d i s t a n c e planet radi i Fig. 4 20-year propagation o f VISIT-1 orbit. Fig. 6 15-year propagation o f Dawn Escalator o r b i t been m o t i o n o f Mars i s n o t c o n s t a n t a l o n g i t s r e a l generated t o v e r i f y t h e t h e o r e t i c a l p r e d i c t i o n , b u t e l l i p t i c a l p a t h (and s i m i l a r l y f o r E a r t h t o a t h e s e d a t a a r e o m i t t e d due t o space l i m i t a t i o n s i n l e s s e r e x t e n t ) , t h e l o n g i t u d i n a l d i f f e r e n c e between The main r e s u l t i n terms o f encounter encounters i s l i k e w i s e n o t c o n s t a n t n o r a r e t h e VISIT-2 t h i s paper. circulating orbits have a1 so speeds compared t o VISIT-1 i s a s l i g h t r e d u c t i o n a t E a r t h t o t h e range 3.7 t o 4.0 km/sec and a l a r g e r r e d u c t i o n a t Mars t o t h e range 2.6 t o 2.8 km/sec. Earth-Mars and Mars-Earth f l i g h t times. This v a r i - a b i l i t y i s r e l a t e d t o d i f f e r e n t bending r e q u i r e ments of the trajectory during the successive VISIT-2 o r b i t s have t h e advantage o f more f r e q u e n t p l a n e t a r y swingbys. E a r t h encounters ( e v e r y 3 y e a r s ) b u t t h e s i g n i f i - n o t l a r g e : 147-170 days f o r E a r t h t o Mars t r a n s i t s cant disadvantage of infrequent Mars encounters Thus, t h i s t y p e o f c i r c u l a t i n g ( e v e r y 7.5 y e a r s ) . The f l i g h t t i m e v a r i a t i o n i s on t h e Up E s c a l a t o r and f o r Mars t o E a r t h t r a n s i t s on t h e Down E s c a l a t o r . o r b i t does n o t appear t o be v e r y u s e f u l f o r t r a n s p o s s i b l y , i n combination R e c a l l t h a t i n t h e c i r c u l a r coplanar problem, w i t h o t h e r c y c l i n g f a c i l i t i e s having more f r e q u e n t more bending i s r e q u i r e d o f E a r t h t h a n i s a v a i l - Mars encounters. abl e , p o r t a t i o n t o Mars except, so a p r o p u l s i v e maneuver i s r e q u i r e d on each o r b i t . IV. Up/Dorm E s c a l a t o r O r b i t C h a r a c t e r i s t i c s W i t h an understanding o f t h e E s c a l a t o r o r b i t from t h e c i r c u l a t i n g c o p l a n a r problem, a search was made t o f i n d t h e e x i s t e n c e o f t r a j e c t o r i e s based upon a c t u a l p l a n e t ephemerides data. The t r a j e c - t o r i e s were begun i n t h e 1995196 t i m e p e r i o d . tially, a point-to-point Ini- c o n i c model was used t o i d e n t i f y t h e o p p o r t u n i t i e s and v e r i f y t h e i r e x i s t a n c e i n t h e r e a l world. I n t h i s model h e l i o c e n - t r i c c o n i c s connect t h e f l y b y s of E a r t h and Mars w i t h t h e t i m e s o f f l y b y v a r i e d t o o b t a i n a match o f V, magnitude a t each f l y b y . Thus a sequence o f f l y b y s s i m i l a r t o those o f the c i r c u l a r coplanar I n t h e r e a l world, the o p t i m a l t r a j e c t o r y c o v e r i n g t h i s 15 y e a r c y c l e r e q u i r e s p r o p u l s i v e maneuvers on o n l y t h r e e o f t h e seven o r b i t s . I n t e r e s t i n g l y enough, t h e sum o f t h e s e t h r e e maneuvers i s a p p r o x i m a t e l y seven t i m e s t h e p e r o r b i t requirement i n t h e c i r c u l a r c o p l anar problem. The p r o p u l s i v e maneuvers a r e made near aphelion o f the c i r c u l a t i n g o r b i t , which o c c u r s about e i g h t months a f t e r Mars encounter on t h e 'Up" o r b i t and about e i g h t months b e f o r e Mars encounter on t h e "Down" orbit. Note t h a t these maneuvers occur on t h e o r b i t s which encounter Mars i n t h e general r e g i o n of i t s p e r i h e l i o n passage when i t i s moving t h e f a s t e s t . model a r e o b t a i n e d (El-M2-E3-M4- ...) ; t h e d i f f e r ence b e i n g t h a t t h e r e a l w o r l d geometry causes t h e p a t t e r n not t o repeat exactly. V These sequences . P l a n e t o c e n t r i c Maneuvers o v e r a 15 y e a r p e r i o d w e r e t h e n used as f i r s t I n t r a d i t i o n a l i n t e r p l a n e t a r y f l i g h t , a space- guesses f o r a computer program which uses t h e more c r a f t i s i n j e c t e d from low E a r t h o r b i t o n t o a t a r - accurate Mu1t i -Conic p r o p a g a t i o n t e c h n i q u e along w i t h o p t i m i z a t i o n techniques1' t o generate a t r a - geted hyperbolic departure trajectory having a p e r i g e e d i s t a n c e e s s e n t i a l l y equal t o t h e low o r b i t A s i m i l a r i n j e c t i o n geometry j e c t o r y w i t h minimum p r o p u l s i v e maneuvers s u b j e c t injection point. t o c o n s t r a i n t s on f l y b y a l t i t u d e s . m i g h t be e f f e c t e d a t Mars f o r t h e r e t u r n f l i g h t t o The i d e a l ( o p t i m a l ) c o p l a n a r i n j e c t i o n Earth. F i g u r e s 5 and 6 i l l u s t r a t e t h e c i r c u l a t i n g maneuver i s g i v e n by o r b i t s f o r b o t h E s c a l a t o r s as t h e y e v o l v e over a c o m p l e t e 15 y e a r c y c l e . h y p e r b o l i c approach speed, C o r r e s p o n d i n g d a t a on c l o s e s t approach d i s - tance, and p r o p u l s i v e AV requirements a r e l i s t e d i n i n t h e case o f d e p a r t i n g from a c i r c u l a r o r b i t . Tables 3 and 4. The s i t u a t i o n i s somewhat d i f f e r e n t f o r c i r c u l a t i n g The o r b i t p l o t s show t h e charac- t e r i s t i c r o t a t i o n of t h e encounter l o c a t i o n s caused orbits by t h e p l a n e t a r y f l y b y s . facility" Because t h e o r b i t a l s i n c e rendezvous must occur w i t h a " r e a l f l y i n g by t h e l a u n c h p l a n e t on a s p e c i - Table 3 Up Escalator Encounter Conditions Encounter Earth-1 Mars-2 Earth-3 Mars-4 Earth-5 Mars-6 Maneuver Earth-7 Mars-8 Maneuver Earth-9 Mars-10 Maneuver Earth-11 Mars-12 Earth-13 Mars-14 Earth-15 Approach ,V km/sec Date 19 01 01 28 08 06 13 16 12 17 07 13 23 06 16 10 28 13 Nov May Jan May Feb Jul Mar Apr Sep May Jul Dec Jul Sep Feb Oct Mar Nov 1996 1997 1999 1999 2001 2001 2002 2003 2003 2004 2005 2005 2006 2007 2008 2009 2010 2001 Closest approach d i s t a n c e planet radi i -- 6.19 ( l a u n c h ) 10.69 5.94 11.74 5.67 10.22 (AV~) 0.54 5.67 7.28 (hV2) 0.74 5.87 6.05 0.45 (AV3) 5.87 7.43 5.89 8.66 5.81 5.8 1.3 29.1 1.2 1.3 -1.2 1.3 -- 1.2 3.4 -- 1.8 6.4 1.9 5.0 1.9 Table 4 Down Escalator Encounter Conditions Encounter Earth-1 Mars-2 Earth-3 Mars-4 Earth-5 Maneuver Mars-6 Earth-7 Maneuver Mars-8 Earth-9 Maneuver Mars-10 Earth-11 Mars-12 Earth-13 Mars-14 Earth-15 Approach ,V km/sec Date 05 20 09 07 17 28 15 08 04 07 02 02 10 12 19 16 13 22 Jun Jan Jul Mar Aug Sep May Oct Dec Aug Jan Feb Oct Mar Nov Apr Dec May 1995 1997 1997 1999 1999 2000 2001 2001 2002 2003 2004 2005 2005 2006 2007 2008 2009 2010 5.88 ( l a u n c h ) 8.52 5.95 7.35 6.01 0.27 (aV1) 6.60 5.88 1.11 (AV2) 7.30 5.39 0.66 (AV3) 9.96 5.48 11.59 5.96 10.55 5.93 Closest approach d i s t a n c e planet r a d i i -5.5 1.8 9.4 1.4 -- 5.2 1.2 -- 1.3 1.4 -- 1.3 1.5 8.4 1.5 5.0 1.8 Generally, t h e p e r i a p s i s d i s t a n c e o f t h i s hyperbola encounter c o n d i t i o n s . 6 For asymptotic displacement up t o 10 km, t h e A V may n o t be v e r y c l o s e t o t h e p l a n e t and c e r t a i n l y p e n a l t y c o u l d b e as h i g h as 1.65 f i e d h y p e r b o l i c t r a j e c t o r y a t a s p e c i f i e d time. varies from encounter t o encounter as discussed previously. T h i s i m p l i e s t h e n e c e s s i t y o f a two- tabu1 a r d a t a for specific rendezvous t i m e i s l i m i t e d t o 7 days. Allowing 21 days f o r rendezvous reduces t h e p e n a l t y c o r r e - impulse maneuver sequence, a t t h e 1east, r e q u i r i n g spondingly by a f a c t o r o f three. a f i n i t e amount o f t i m e t o accomplish. AB = 10 Limiting km/sec i f t h e This example w i t h 6 km represents one o f t h e worst cases o f t h e rendezvous t r a n s f e r t i m e i s an i m p o r t a n t con- t h e VISIT-1 encounters w i t h E a r t h (Earth-8 i n Table s i d e r a t i o n s i n c e t h e crew i n t h e small Taxi vehi- 1). Another example i s t h e Mars-4 encounter i n c l e s w i l l n o t have t h e same environmental l u x u r i e s Table 1: o f t h e l a r g e t r a n s p o r t a t i o n f a c i l i t y t o which t h e y 0.223 km/sec f o r A T = 7 days o r 0.074 km/sec f o r AT a r e destined. = 21 days. Furthermore, t h e i n j e c t i o n maneuvers w i t h A B = 135,000 km, t h e A V p e n a l t y i s w i l l i n c u r a A V p e n a l t y compared t o t h e i d e a l v a l u e o f e q u a t i o n ( 9 ) inasmuch a s t h e t w o h y p e r b o l i c asymptotes (i.e., o f t h e Taxi and CASTLE) w i l l n o t be a l i g n e d but, rather, w i l l cross a t some angle depending on t h e t i m e i n t e r v a l allowed. The l o n g e r t h e time, t h e s m a l l e r t h e angle and, t h e r e f o r e , t h e Up/Down E s c a l a t o r encounter c o n d i t i o n s 1 is t e d i n Tables 3 and 4 show g e n e r a l l y s m a l l e r c l o s e s t approach penalties. distances translates to smaller o f t h e Up E s c a l a t o r which has AB = 95,000 km f o r a p e n a l t y o f 0.157 s m a l l e r t h e qV penalty. which The worst case i s t h e Mars-4 encounter km/sec w i t h rendezvous i n 7 days. A more t y p i c a l case i s t h e Earth-11 encounter o f T h i s problem has been examined q u a n t i t a t i v e l y i n some d e t a i l u s i n g b o t h an approximate two-body, Table 3 which has AB = 5,400 km and a 7-day p e n a l t y o f o n l y 9 m/sec. The c l e a r i m p l i c a t i o n i s t h a t Earth-centered model and an accurate N-body i n t e - s h o r t e r Taxi r i d e s c o u l d e a s i l y be a f f o r d e d i n t h e g r a t i o n model. E s c a l a t o r t r a n s p o r t a t i o n mode. Suprisingly l i t t l e error i n the Recall , however, two-body r e s u l t s were found even f o r l a r g e swingby t h a t t h e i d e a l i n j e c t i o n A V's a r e much l a r g e r f o r d i s t a n c e o f t h e CASTLE and f o r rendezvous p o i n t s t h e E s c a l a t o r mode t h a n t h e VISIT mode because o f o u t s i d e t h e E a r t h ' s sphere-of-influence. t h e h i g h e r values o f ,V, more, a very simpl i f i e d "guidance Further- formula" also propel 1a n t y i e l d s an accurate measure o f t h e AV p e n a l t y : AVpenalty - p a r t i c u l a r l y a t Mars. performance t r a d e o f f measured requirement is The i n terms o f t o t a l therefore not so simpl i s t i c b u t must be s u b j e c t t o c a r e f u l a n a l y s i s . AB - AT (10) There a r e o t h e r penal t i e s i n p l a n e t o c e n t r i c where AT i s t h e t i m e allowed from i n j e c t i o n t o rendezvous and AB i s t h e a b s o l u t e magnitude d i f f e r e n c e between t h e two h y p e r b o l i c asymptotes, t r a d i t i o n a l aim p o i n t o r miss distance. i.e., the The miss d i s t a n c e i s c a l c u l a t e d by t h e expression: maneuvers r e 1ated t o plane changes, and launch delays. time-phasi ng , These problems have been exa- mined b u t o n l y i n a v e r y c u r s o r y manner t o date. S p e c i f i c r e s u l t s o r c h a r a c t e r i s t i c s o f t h e plane change and time-phasing penal t i e s depend very much on t h e p a r t i c u l a r s t a g i n g "spaceportii c e n t r i c space t h a t i s assumed. i n planeto- A1 so, a p p r o p r i a t e software t o o b t a i n optimal s o l u t i o n s has y e t t o be where r i s t h e p e r i a p s i s o r c l o s e s t approach d i s P tance o f t h e a p p r o p r i a t e hyperbola. A typical p e r i a p s i s i n j e c t i o n p o i n t a t e i t h e r E a r t h o r Mars developed. Some p r e l i m i n a r y c a l c u l a t i o n s assuming an Earth-Moon L1 p o i n t s t a g i n g base have i n d i c a t e d t h a t p l a n e change/timing p e n a l t i e s c o u l d p o s s i b l y be l i m i t e d t o 250 m/sec b u t may r e q u i r e e l a b o r a t e encounter i s 500 km a l t i t u d e . and l e n g t h l y maneuver s t r a t e g i e s . A graph o f equation (10) shown i n F i g u r e 7 i s a more convenient and g e n e r a l i z e d way t o present the main characteristic rather than presenting F i g u r e s 8 and 9 i l l u s t r a t e Taxi maneuvers made a t t h e Mars t e r m i n a l assuming a s t a g i n g spaceport i n t h e v i c i n i t y o f Phobos (cryogenic p r o p e l l a n t AV PENALTY KWIC . Fig 7 Hyberboli c rendezvous requirements \ TARGETING TO AEROCAF'TIRE FROM INCW - '4- - I( I \ 6- = -23.5 L a_ = 286.6 \ ~b = 16,130 km '4-' . = 9.97 kmlsec Limit \ \ 0.557 km/se POST-INSERTION ORBIT i n = 23.7' = 23.7' o = 180' ra = 10.68 RM Fig. 8 - Taxi manuovers to Phobos Up Escalator Mars encounter a t 5 , + 0 . 4 5 ~ t TARGETING TO OUTGOING ASYMPTOTE V_ = 6.602 km/sec 6- = 6.5' Ab = 13,949 km AV4 = 0 . 0 2 3 km/s 0- = 177. l o C--------- t 15.0 RM 12.5 10.0 7.5 PRE-INJECTION ORB lT INITIAL TRANSFER ORBIT i = 6.6' n = 75.P 0 r = o0 = 1.147 R,, ra = 10.68 R,, Fig. 9 t3.43. - D Taxi maneuvers f r a Phobo ILrs CMUntCl i t m Escalator The example cases correspond production f a c i l i t y ) . r e t u r n s t o E a r t h on t h e Down Escalator. Use of t o t h e Mars-2 encounter o f t h e Up E s c a l a t o r and t h e VISIT o r b i t s would r e q u i r e a t l e a s t t w i c e as many Mars-6 encounter o f t h e Down Escalator. o p e r a t i n g CASTLES t o achieve comparable encounter Mars o r b i t capture i s assumed t o be accomplished by a combina- frequencies and crew t r a n s i t times. tion maneuvers t h e making o f an i n t e r e s t i n g performance t r a d e o f f e f f e c t e d by t h e Taxi v e h i c l e d e p a r t i n g t h e CASTLE. p r o b l e m between t h e s e t w o t y p e s o f c i r c u l a t i n g of aerocapture and propulsive LID a e r o s h i e l d i s assumed t o The low-to-moderate o r b i t s and, f o r t h a t matter, Thus, t h e r e i s between t h e c i r c u - have an u p p e r l i m i t on e n t r y v e l o c i t y o f 11.1 l a t i n g mode o f t r a n s p o r t a t i o n compared t o t h e more km/sec (Vm l e s s than 9.97 km/sec). t r a d i t i o n a l minimum-energy r o u n d - t r i p missions w i t h F i g u r e 8 shows t h a t t h e f i r s t p r o p u l s i v e maneuver o f 0.721 km/sec l e n g t h y stopovers. provides t h e v e l o c i t y r e d u c t i o n i n combination w i t h t r a d e o f f i s t h e s u b j e c t o f t h e companion paper by t h e A6 t a r g e t i n g . Hoffman, e t a1 appearing i n t h i s Proceedings. i s -23.5", Since t h e approach d e c l i n a t i o n As m e n t i o n e d e a r l i e r , t h i s t h e p o s t - i n s e r t i o n o r b i t has t h i s value o f i n c l i n a t i o n which must then be a d j u s t e d t o t h e Mars e q u a t o r i a l plane i n which Phobos moves. second maneuver o f 0.322 The km/sec provides t h e com- The potential application of circulating o r b i t s i n s u p p o r t o f a s u s t a i n e d , manned Mars exploration program appears t o have promise b u t b i n a t i o n o f plane change and p e r i a p s i s r a i s i n g t o c l e a r l y r e q u i r e s much more extensive study. Phobos o r b i t distance. The t h i r d and f i n a l maneu- area o f o r b i t a l mechanics, t h e main problem n o t y e t km/sec a c h i e v e s rendezvous a t t h e addressed thoroughly i s t h e a n a l y s i s (and o p t i m i - v e r o f 0.557 Phobos spaceport. I n the F i g u r e 9 describes t h e r e v e r s a l z a t i o n ) o f p l a n e t o c e n t r i c maneuver s t r a t e g i e s f o r o f t h i s process f o r t h e crew d e p a r t i n g f o r E a r t h on i n j e c t i o n t o and departure from t h e i n t e r p l a n e t a r y t h e Down E s c a l a t o r f o u r years l a t e r . face-to-Phobos The Mars sur- spaceport s h u t t l e maneuvers a r e n o t shown here, b u t t h e round t r i p AV of t h e aers-pro- p u l s i v e s h u t t l e i s about 7.5. stations. T h i s i s a f e r t i l e area o f i n v e s t i g a t i o n s i n c e t h e r e a r e a number o f p o s s i b l e o p t i o n s f o r l c c s t i n g t h e p l a n e c r e n t r ; ~ s t a g i n g base. one example, As j u s t A l d r i n has p r o p o s e d an Earth-Moon c y c l e r as t h e a p p r o p r i a t e stepping o f f base f o r VI. i n t e r p l a n e t a r y t r a v e l due t o i t s p r o x i m i t y t o b o t h Comparison o f R e s u l t s and Conclusions sources o f T h i s f i n a l s e c t i o n o f t h e paper c o n s o l i d a t e s p r o p e l l a n t and i t s high-energy, perigee o r b i t . low- Others have proposed t h e Earth-Sun t h e study r e s u l t s by comparing t h e main c h a r a c t e r - L1 p o i n t and t h e Earth-Moon L2 p o i n t , and s i m i l a r i s t i c s o f t h e two t y p e s o f c i r c u l a t i n g o r b i t s v a r i a t i o n s on t h e theme apply t o t h e Mars t e r m i n a l . between E a r t h and Mars. I t i s hoped t h a t t h i s p a p e r w i l l i n s p i r e much Table 5 summarizes t h e key parameters o f t h e VISIT and E s c a l a t o r o r b i t s . In i n t e r e s t i n g new work. a d d i t i o n t o t h e midcourse p r o p u l s i v e A V r e q u i r e ment, two key d i f f e r e n c e s o f E s c a l a t o r o r b i t s com- References pared t o VISIT o r b i t s a r e h i g h e r values o f encount e r approach speed a t E a r t h b u t m a i n l y a t Mars, and much lower values o f c l o s e s t approach d i s t a n c e a t b o t h p l a n e t s b u t m a i n l y a t Earth. The v e l o c i t y c h a r a c t e r i s t i c i s a c l e a r disadvantage i n terms of t h e Taxi p r o p u l s i o n requirements f o r launch t o t h e c i r c u l a t i n g CASTLES. The d i s t a n c e c h a r a c t e r i s t i c i s an advantage ( b u t n o t n e c e s s a r i l y an o f f s e t t i n g one) i n terms o f t h e Taxi rendezvous t i m e and AV requirement. O f course, the Escalator-type o r b i t o f f e r s more r e g u l a r , more frequent encounters w i t h E a r t h and Mars t h a n does VISIT o r b i t s . Also they have t h e d e s i r a b l e c h a r a c t e r i s t i c o f s h o r t t r a n s i t s (150-170 d a y s ) t o Mars on t h e Up E s c a l a t o r and Ross, S., "A Systematic Approach t o t h e Study o f Non-stop I n t e r p l a n e t a r y Round T r i p s ," I n t e r p l a n e t a r y Missions Conference ( 9 t h Annual AAS Meeting), Los Angeles, CAY January 1963. H o l l i s t e r , W. n a u t i c a Acta., M., "Castles i n Space," January 1967. Astro- P 3 l l i s t e r , W. M., " P e r i o d i c O r b i t s f o r I n t e r p l a n e t a r y F l i g h t , " AAS Paper No. 68-102, AASI AIAA Astrodynamics Special is t Conference, Jackson, Wyoming, September 1968. H o l l i s t e r , W. M. and Menning, M. D., " I n t e r p l a n e t a r y O r b i t s f o r Mu1t i p l e Swingby Missions," AIAA Paper No. 69-931, AIAAIAAS Astrodynamics Conference, Princeton, NJ, August 1969. --. N i e h o f f , J., "Manned Mars M i s s i o n Design," Steps t o Mars, J o i n t AIAA/Planetary S o c i e t y Conference, N a t i o n a l Academy o f Sciences, Washington, DC, J u l y 1985. N i e h o f f , J., " I n t e g r a t e d Mars Unmanned Surf a c e E x p l o r a t i o n (IMUSE), A New S t r a t e g y f o r t h e I n t e n s i v e Science E x p l o r a t i o n o f Mars," Space S c i e n c e B o a r d , Woods H o l e , MA, J u l y 1985. A l d r i n , E. E., " C y c l i c T r a j e c t o r y Concepts ," SAIC p r e s e n t a t i o n t o t h e I n t e r p l a n e t a r y Rapid T r a n s i t Study Meeting, J e t P r o p u l s i o n Laborat o r y , October 28, 1985. " T r a n s p o r t a t i o n Mode Performance Comparison F o r a Sustained Manned Mars Base," Science A p p l i c a t i o n s I n t e r n a t i o n a l Corporation, F i n a l Report under JPL C o n t r a c t No. 957404, December 1985. Hoffman, S. J., F r i e d l a n d e r , A. L., and Nock, K. T., " T r a n s p o r t a t i o n Mode Performance Comp a r s i o n f o r a Sustained Manned Mars Base," AIAA Paper No. 86-2016-CP, AIAA/AAS Astrodynamics Conference, W i l liamsburg, VA, August 1820, 1986. 10. "InterDIAmario, L. A. and Byrnes, D. V., p l a n e t a r y T r a j e c t o r y O p t i m i z a t i o n w i t h Appl i c a t i o n t o G a l i l e o , " AIAA J o u r n a l o f Guidance, C o n t r o l and Dynamics, Vol. 5, No. 5, September-October 1982, p. 465. - Table 5 Key Parameter Canparison o f VISIT and E s c a l a t o r O r b i t s Parameter Frequency o f E a r t h encounters ( y r s ) Frequency o f Mars encounters ( y r s ) VISIT-2 5.0 3.0 Down E s c a l a t o r 2.14 2.14 7.5 2.14 2.14 0.5-3.0 1.0-2.4 0.43 1.71 Mars-to-Earth f l i g h t t i m e ( y r s ) 0.7-3.3 0.6-2.1 1.71 E a r t h encounter V, 4.2-4.8 3.7-4.0 5.7-6.2 5.4-6.0 3.7-4.1 2.6-2.8 6.1-11.7 6.6-11.6 E a r t h encounter d i s t a n c e (RE) 6.9-SO1 8.3-SO1 1.2-1.9 1.2-1.8 Mars encounter d i s t a n c e (RM) 1.5-40.7 2.0-18.5 1.3-29.1 1.3-9.4 (km/sec) (km/sec) Midcourse adjustment, 15 y e a r s (km/sec) Max. E a r t h access AV, Max. Mars access AV, * 14 days (km/sec)* 14 days (km/sec)* 3.75 Up E s c a l a t o r Earth-to-Mars f l i g h t t i m e ( y r s ) Mars encounter ,V I- VISIT-1 0.43 0 0 1.7 2.0 5.5 5.2 4.8 4.7 2.9 2.2 9.4 9.2 Sum o f i d e a l i n j e c t i o n and rendezvous maneuvers
© Copyright 2026 Paperzz