Math 121 - Summary of Limit Laws G.Pugh May 7 2012 G.Pugh (VIU) Math 121 - Summary of Limit Laws May 7 2012 1 / 18 Limit Laws G.Pugh (VIU) Math 121 - Summary of Limit Laws May 7 2012 2 / 18 Assumptions In the following, suppose: c represents a constant (a fixed number) The limits lim f (x) x→a and lim g(x) x→a both exist G.Pugh (VIU) Math 121 - Summary of Limit Laws May 7 2012 3 / 18 Sum Law lim [f (x) + g(x)] = lim f (x) + lim g(x) x→a x→a x→a In words: The limit of a sum is the sum of the limits Example: lim x→π G.Pugh (VIU) √ √ x + sin x = lim x + lim sin x x→π Math 121 - Summary of Limit Laws x→π May 7 2012 4 / 18 Difference Law lim [f (x) − g(x)] = lim f (x) − lim g(x) x→a x→a x→a In words: The limit of a difference is the difference of the limits Example: lim x→−3 G.Pugh (VIU) 1 1 3 3 −x = lim − lim x x x→−3 x x→−3 Math 121 - Summary of Limit Laws May 7 2012 5 / 18 Constant Multiplier Law lim [cf (x)] = c lim f (x) x→a x→a In words: The limit of a constant times a function is the constant times the limit of the function. Example: lim √ x→ 2 G.Pugh (VIU) 3 √ 7 x 3 = 7 1 lim √ √ x x→ 2 Math 121 - Summary of Limit Laws May 7 2012 6 / 18 Product Law lim [f (x)g(x)] = x→a lim f (x) x→a lim g(x) x→a In words: The limit of a product is the product of the limits Example: h i 2 2 lim (x + 2)(1 + cos x) = lim (x + 2) lim (1 + cos x) x→0 G.Pugh (VIU) x→0 Math 121 - Summary of Limit Laws x→0 May 7 2012 7 / 18 Quotient Law lim f (x) f (x) provided lim g(x) 6= 0 . lim = x→a x→a x→a g(x) lim g(x) x→a In words: The limit of a quotient is the quotient of the limits x2 + 2 Example: lim x→0 1 + cos x G.Pugh (VIU) lim (x 2 + 2) = x→0 lim (1 + cos x) x→0 Math 121 - Summary of Limit Laws May 7 2012 8 / 18 Power Law n lim [f (x)] = h x→a in lim f (x) where n is a positive integer. x→a In words: The limit of a power is the power of the limit Example: lim [x + tan x]1000 = x→π G.Pugh (VIU) h i1000 lim (x + tan x) x→π Math 121 - Summary of Limit Laws May 7 2012 9 / 18 Root Law lim x→a q p n f (x) = n lim f (x) where n is a positive integer, and where x→a lim f (x) > 0 if n is even. x→a In words: The limit of a root is the root of the limit Example: lim x→1 G.Pugh (VIU) p x2 + 5x 3 = r lim x 2 + 5x 3 x→1 Math 121 - Summary of Limit Laws May 7 2012 10 / 18 Particular Limit Results G.Pugh (VIU) Math 121 - Summary of Limit Laws May 7 2012 11 / 18 Constants lim c = c x→a √ Example: lim x→3 G.Pugh (VIU) √ 2π = 2π Math 121 - Summary of Limit Laws May 7 2012 12 / 18 Limit of f (x) = x lim x = a x→a Example: lim x = 5 x→5 G.Pugh (VIU) Math 121 - Summary of Limit Laws May 7 2012 13 / 18 Polynomials Using the Sum, Difference, Constant Multiplier and Power Laws: If f (x) is a polynomial, (for eg. f (x) = 5x 3 − πx 2 − 12 ), then lim f (x) = f (a) . x→a Example: lim 5x 3 − πx 2 − x→−1 G.Pugh (VIU) 1 1 11 = 5(−1)3 − π(−1)2 − = − π − 2 2 2 Math 121 - Summary of Limit Laws May 7 2012 14 / 18 Rational Functions Using the previous result and the Quotient Law: If f (x) and g(x) are polynomials and g(a) 6= 0 then f (x) f (a) lim . = x→a g(x) g(a) 2x 3 − x 2(2)3 − (2) 14 = = =2 3(2) + 1 7 x→2 3x + 1 Example: lim G.Pugh (VIU) Math 121 - Summary of Limit Laws May 7 2012 15 / 18 Trigonometric Functions lim sin (x) = sin (a) x→a lim cos (x) = cos (a) x→a Example: lim sin (x) = sin (π/6) = x→π/6 G.Pugh (VIU) 1 2 Math 121 - Summary of Limit Laws May 7 2012 16 / 18 Direct Substitution Property Putting together these limit results we have the Direct Substitution Property : If f (x) is a function defined using sums, differences, products or quotients involving polynomials, sin (x), or cos (x), and if a is in the domain of f (x) (that is, f (a) is defined) then lim f (x) = f (a) x→a Example: −2x 3 − sin2 (x) −2π 3 − sin2 (π) −2π 3 − 0 lim = = = 2π 3 x→π cos3 (x) cos3 (π) (−1)3 G.Pugh (VIU) Math 121 - Summary of Limit Laws May 7 2012 17 / 18 Some Advice When evaluating limits, try to apply the Direct Substitution Property first. If direct substitution fails, then resort to more sophisticated techniques. G.Pugh (VIU) Math 121 - Summary of Limit Laws May 7 2012 18 / 18
© Copyright 2026 Paperzz