Receptorarchitecture and Neural Systems Karl Zilles Institute of Neuroscience and Medicine INM-1 Research Centre Jülich and University Hospital of Psychiatry, Psychotherapy and Psychosomatics RWTH Universität Aachen Receptors are protein complexes in the cell membrane, to which transmitters selectively bind. ionotropic receptors have an integrated ion channel and regulate ion fluxes between extra- and intracellular space metabotropic receptors are linked to intracellular second messenger systems, and control metabolic pathways, ion channels, gene activity, etc. What does receptor mapping provide? It provides insight into the molecular basis of the resting state condition. Most of the brain‘s energy consumption is used for maintaining ion channel functions during resting state. Only a minority of the energy is required during stimulation conditions. Receptor mapping overcomes limitations of unimodal brain mapping approaches It provides brain maps based on molecules which are key elements of signal transmission within and between neural systems Areas within a given functional system have similar multireceptor expression patterns. Different functional systems differ by those expression patterns Example: Ionotropic Transmitter Receptors presynaptic membrane postsynaptic membrane postsynaptic ionotropic receptor R ion channel axonal bouton transmitter presynaptic ionotropic receptor postsynaptic Spine AMPA PSD NMDA NR1 presynaptic Dendrite Postsynaptic density PSD Dendrite NMDA NR1 AMPA Joachim Lübke, Research Center Jülich, Germany (unpublished) NMDA and AMPA are the most abundant glutamate receptor types in the human cerebral cortex. Method: Cryo-Electron-Microscopy and Immunocytochemistry with specific antibodies labeled with gold nanoparticles of different size (for AMPA 9 nm, for NMDA 12 nm) 5-HT1A, 5-HT2 GABAB AMPA, NMDA, kainate Adenosin A1 D1, D2, D4 α1, α2 AMPA, NMDA, kainate AMPA, NMDA, kainate GABAA, bz.binding site nicotinic, M1, M2, M3 GABAA, bz.binding site D1, D2, D4 GABAB 5-HT1A, 5-HT2 GABAA, bz.binding site Glutamate GABA Acetylcholine α1, α2 nicotinic, M1, M2, M3 GABAB AMPA, NMDA, kainate GABAA, bz.binding site GABAA, bz.binding site Dopamine Noradrenaline Serotonin How to map receptor distributions: • in vivo receptor PET • in vitro quantitative receptor autoradiography • immunohistochemistry of receptor proteins and subunits • transcriptomics Quantitative in vitro Receptor Autoradiography: Method (1) Gyrus praecentralis Sulcus centralis slab 2 HG05/00 slab 2 native slab 2 frozen at -70° C Quantitative in vitro Receptor Autoradiography: Method (2) Cryostate serial sections (10 – 20 µm) – mounting on glass slides Incubation of alternating serial sections with tritium-labeled ligands Labeling of different receptors of all classical transmitter systems (Glutamate, GABA, Acetylcholine, Dopamine, Serotonin, Noradrenaline) Exposition against β-sensitive film together with radioactive scales Digitization, quantification and colour coding of the film Identification of cytoarchitectonic areas by comparison with neighbouring cell-body stained sections Examined receptor binding sites Neurotransmitter Glutamate GABA Acetylcholine Receptor AMPA Kainate NMDA GABAA GABAB BZ M1 M2 M3 Noradrenaline Histological staining: Cell bodies Myelin Serotonin Dopamine N α1 α2 5-HT1A 5-HT2 D1 D2 [3H] Ligand AMPA kainate MK-801 muscimol, SR 95531 CGP 54626 Flumazenil pirenzepine oxotremorine-M, AF-DX 384 4-DAMP epibatidine prazosin UK 14,304 RX-821002 8-OH-DPAT ketanserin SCH 23390 Fallypride or Raclopride V2 V1 V1 V2 Sulcus calcarinus vertical vertical meridian meridian V1 V1 V2 Gennari‘s stripe Myelin V2 vertical vertical meridian meridian GABAA Receptor Zilles, K., Palomero-Gallagher, N. , Schleicher, A.: Transmitter receptors and functional anatomy of the cerebral cortex. J. Anat. 205: 417-432 (2004) Entorhinal-Hippocampal System Why are architectonic studies essential for understanding the organization of neural systems? INPUT: fi CA3 trisynaptic glutamatergic system: CA2 Sub 2 CA4 Dent Parsub 3 1 CA1 1 perforant path 2 mossy fibers 3 Schaffer collaterals 35 temporal and perirhinal input to subiculum n.d. lateral 36 medial ventral general neocortical input Ent n.d. dorsal Prsub cingulate, superior temporal, dorsolateral prefrontal, and IPL input to presubiculum OUTPUT: from the subiculum and CA1 to temporal, parahippocampal, perirhinal, cingulate, prefrontal, and orbitofrontal areas 802 633 CA2 Schaffer collateral CA2 CA3 fimbria mossy fibres 464 CA3 295 fmol/mg protein AMPA mol CA1 mol CA1 sub perforant path 1061 486 632 417 fmol/mg protein NMDA 629 Glutamatergic terminals of the perforant path and the Schaffer collaterals 493 357 221 fmol/mg protein Kainate mol CA1 Glutamatergic terminals of the perforant path and the Schaffer collaterals Glutamatergic terminals of the mossy fibers Primary Sensory Cortices 96 208 320 432 fmol/mg protein primary somatosensory 3b motor cingulate 3a insular parietal primary auditory unimodal auditory Toga AW, Thompson PM, Mori S, Amunts K, Zilles K (2006) Towards multimodal atlases of the human brain. Nature Rev. Neurosci. 7: 952-966 Zilles K, Amunts K (2009) Receptor mapping: Architecture of the human cerebral cortex. Current Opinion Neurol. 22: 331–339 multimodal temporal association pre/parasubiculum entorhinal cholinergic muscarinic M2 receptor Cholinergic muscarinic M2 receptor low density high density sc sc motor cortex motor cortex primary somatosensory cortex primary somatosensory cortex primary auditory cortex primary auditory cortex Human Brain Macaque Brain 154 379 604 829 fmol/mg protein 668 sensorimotor 1084 1499 1915 sensorimotor cingulate cingulate insular insular primary auditory unimodal auditory unimodal auditory pre/parasubiculum multimodal temporal association entorhinal primary auditory pre/parasubiculum multimodal temporal association AMPA receptor [3H] AMPA GLUTAMATE SYSTEM entorhinal Kainate receptor [3H] kainate Receptor Fingerprints Multimodal visualization of receptor organization in human cerebral cortex Low denisty High density AMPA Kainate NMDA M1 M2 Glutamate α1 α2 Noradrenaline M3 nicotinic Acetylcholine GABAA GABA 5-HT1A 5-HT2 Serotonin D1 D2 Dopamine Zilles, K., Schleicher, A., Palomero-Gallagher, N., Amunts, K.: Quantitative analysis of cyto- and receptorarchitecture of the human brain, pp. 573-602. In: Brain Mapping: The Methods, 2nd edition (A.W. Toga and J.C. Mazziotta, eds.). Academic Press (2002) A receptor fingerprint is… AMPA D1 3000 kainate 2500 5-HT2 NMDA 2000 1500 1000 5-HT1A GABAA 500 0 α2 GABAB α1 BZ nACh M1 M3 M2 caudate putamen area 4 „Receptor Fingerprints“ AMPA AMPA 3000 D1 5-HT2 2000 5-HT1A 1000 kainate NMDA GABAA 0 α2 GABAB α1 BZ N M1 M3 M2 primary motor cortex 3000 D1 5-HT2 2000 5-HT1A 1000 kainate NMDA GABAA 0 α2 GABAB α1 BZ M1 N M3 M2 Hippocampus CA1-3 What receptors tell us about laminar segregation and input-output relations in the cerebral cortex CYTOARCHITECTURE molecular layer I outer granular layer II outer pyramidal layer III inner granular layer IV inner pyramidal layer V polymorphic layer VI CONNECTIVITY thalamocortical input corticocortical input cortico-cortical, -striatal, -thalamic, -bulbar, and -spinal output SYNAPTIC DENSITY Receptor Fingerprints of the primary visual cortex: layer specificity L. I D1 5-HT2 AMPA 3000 kainate NMDA 2000 1000 5-HT1A GABAA 0 α2 GABAB α1 BZ N D1 5-HT2 AMPA 3000 GABAA GABAB α1 BZ N M1 M3 M2 GABAA 0 α2 GABAB α1 L. VI NMDA 0 NMDA D1 5-HT2 M2 NMDA 1000 5-HT1A GABAA 0 α2 GABAB α1 BZ N M1 M3 M2 NMDA 2000 1000 5-HT1A GABAA 0 α2 GABAB BZ M1 M3 kainate 2000 5-HT2 kainate N M1 AMPA 3000 D1 AMPA 3000 α1 BZ N kainate L. IV kainate 1000 5-HT1A M3 1000 α2 AMPA 3000 2000 M2 2000 5-HT1A D1 5-HT2 M1 M3 L. V Ll. II-III M2 Layer IV: Thalamo-cortical Input modality-specific balance between receptors primary somatosensory (touch) AMPA 3000 D1 5-HT2 N GABAA 0 α2 D1 NMDA 1000 5-HT1A GABAB α1 BZ N M1 M3 M2 M1 M2 parietal association (visually guided grasping) kainate 2000 GABAB BZ M3 prefrontal association (working memory) 5-HT2 0 M2 AMPA 3000 GABAA N M1 M3 NMDA α1 4 BZ kainate 1000 α2 GABAB α1 AMPA 3000 2000 5-HT1A GABAA 0 D1 5-HT2 NMDA 1000 α2 D1 kainate 2000 5-HT1A primary visual 5-HT2 AMPA 3000 kainate NMDA 2000 1000 5-HT1A GABAA 0 α2 GABAB α1 BZ N M1 M3 M2 Cluster analysis of the multi-receptor fingerprints of BROCA‘s region, prefrontal and motor cortex prefrontal 47 primary motor cortical area 4 premotor 6r1 6v1 op9 4 op8 language 45 44 6v1 44 45 47 0.2 0.3 0.4 0.5 0.6 0.7 6r1 op8 op9 0.8 Amunts, K., Lenzen, M., Friederici, A.D., Schleicher, A., Morosan, P., Palomero-Gallagher, N., Zilles, K.: Broca's region: Novel organizational principles and multiple receptor mapping. PLoS Biology 8(9): e1000489. doi:10.1371/journal.pbio.1000489 (2010) Whole brain hierarchical cluster analysis based on multi-receptor fingerprints PFt PFop PFcm PGa PGp PFm PF 32' v23 24 OP a24' 6d v1 FG2 FG1 v4v Oc3v 3b BA45 BA44 p24' BA8 BA4 BA38 5l 7pc 5m BA2 Te4 Te3 Te2 Te1 3a BA1 30 29 d23 Oc3d Oc4d v2v v2d 7ma 7la 31 7mp 7lp CA ent subic dg BA36 BA20‘ 25 p32 s32 10m BA47 4 3 2 0 1 Euclidean distance 5 6 - Normalization: divide by mean - Euclidean distances, Ward linkage - Cophrenetic coefficient: 0.58 entorhinal anterior inferior sensorimotor visual Broca motor somatoauditory retro- visual superior -hippocampalcingulate- parietal limbic splenial parietal circuit prefrontal multimodal ventral -sensory perilimbic dorsal stream cortex stream domaine proisocortex Cluster analysis of the human cingulate cortex: A multi-region model based on receptor fingerprints 4.5 4 visuospatial attention memory 3.5 emotion 3 2 ACC 1.5 motor control decision MCC autonomic control 2.5 aMCC pMCC limbic memory PCC RSC 1 29l 29m 30 v23 d23 31 23c 23d 24dd 24dv p24b' p24a' 24c'v 24c'd 32' a24b' a24a' 33 25 32 24cd 24cv 0 24b 0.5 24a Euclidean distance (Ward linkage) Palomero-Gallagher, N., Vogt, B.A., Schleicher, A., Mayberg, H.S., Zilles, K. (2009) Receptor architecture of human cingulate cortex: Evaluation of the four-region neurobiological model. Human Brain Mapping 30: 2336-2355 Thanks to: Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich Katrin Amunts Svenja Caspers Joachim Lübke Hartmut Mohlberg Nicola Palomero-Gallagher Axel Schleicher
© Copyright 2026 Paperzz