TC`s SHORTCUT TECHNIQUES EBOOKLET

CAT
AreYou
PreparingFor
CAT2017?
Problem Solving Techniques Booklet
By Ashank Dubey (CAT 100%iler)
Visit: www.testcracker.in
Contact: [email protected]
Call: 9035001996
For Reviews or Testimonials visit us on www.facebook.com/testcracker
CAT
QUANTTECHNIQUESBYTESTCRACKER
INDEX
(1)CONSTANTPRODUCTRULE
(2)POWERCYCLE
(3)“MINIMUMOFALL”REGIONSINVENNDIAGRAMS
(4)LAST2DIGITSTECHNIQUE
(5)SIMLIARTODIFFERENTGROUPING(P&C)
(6)APPLICATIONOFFACTORIALS
(7)GRAPHICALDIVISIONFORGEOMETRY
(8)ASSUMPTIONMETHOD
(1)CONSTANTPRODUCTRULE(1/x)&1/(x+1)
Thisrulecanbeappliedwhenwehavetwoparameterswhoseproductisconstant,orinotherwords,whentheyareinversely
proportionaltoeachother.
e.g.)TimexSpeed=Distance,Pricexconsumption=Expenditure,Lengthxbreadth=Area
A1/xincreaseinoneoftheparameterswillresultina1/(x+1)decreaseintheother,Parameteriftheparametersare
inverselyproportional.
Let’sseetheapplicationwiththefollowingexamples
1. Amantravelsfromhishometoofficeat4km/hrandreacheshisoffice20minlate.Ifthespeedhadbeen6km/hrhewould
havereached10minearly.Findthedistancefromhishometooffice?
Solution:Assumeoriginalspeed=4km/hr.Percentageincreaseinspeedfrom4to6=50%or½.1/2increaseinspeedwillresult
in1/3decreaseinoriginaltime=30minutes.(fromgivendata).Originaltime=90minutes=1.5hoursàAnswerisDistance=
4x1.5=6km
2. A20%increaseinpriceofsugar.Findthe%decreaseinconsumptionafamilyshouldadoptsothattheexpenditureremains
constant
Solution:Herepricexconsumption=expenditure(constant)
Usingthetechnique,20%(1/5)increaseresultsin16.66%(1/6)decreaseinconsumption.Answer=16.66%
(2)POWERCYCLE
b
Thelastdigitofanumberoftheforma fallsinaparticularsequenceororderdependingontheunitdigitofthenumber(a)and
thepowerthenumberisraisedto(b).Thepowercycleofanumberthusdependsonits’unitdigit.
Considerthepowercycleof2
1
5
2 =2, 2 =32 2
6
2 =4
2 =64 3
7
2 =8
2 =128 4
8
2 =16 2 =256 th
Asitcanbeobserved,theunitdigitgetsrepeatedafterevery4 powerof2.Hence,wecansaythat2hasapowercycleof
2,4,8,6withfrequency4.
Thismeansthat,anumberoftheform
4k+1
2 willhavethelastdigitas2
4k+2
2 willhavethelastdigitas4
4k+3
2 willhavethelastdigitas8
4k+4
2 willhavethelastdigitas6(wherek=0,1,2,3…)
Thisisapplicablenotonlyfor2,butforallnumbersendingin2.
Thereforetofindthelastdigitofanumberraisedtoanypower,wejustneedtoknowthepowercycleofdigitsfrom0to9,
whicharegivenbelow
Visit: www.testcracker.in
Contact: [email protected]
Call: 9035001996
For Reviews or Testimonials visit us on www.facebook.com/testcracker
CAT
Unitdigit
0
1
2
3
4
5
6
7
8
9
Powercycle
0
1
2,4,8,6
3,9,7,1
4,6
5
6
7,9,3,1
8,4,2,6
9,1
Frequency
1
1
4
4
2
1
1
4
4
2
Forexample
75
1. Findtheremainderwhen3 isdividedby5.
(a)Expresspowerintheform,4k+xwherex=1,2,3,4.Inthiscase75=4k+3.
(b)Takethepowercycleof3whichis3,9,7,1.Sincetheformis4k+3,takethethirddigitinthecycle,whichis7
Anynumberdividedby5,theremainderwillbethatoftheunitdigitdividedby5.Hencetheremainderis2.
Sometimes,youmaygetaquestioninthetermofvariables,whereyouneedtosubstitutevaluestogettheanswerinthefastest
waypossible.
Forexample,
3^4n
2. Findtheunitdigitof7
3^4
81.
Putn=1,theproblemreducesto7 ,whichis7 Since81=4k+1,takethefirstdigitinthepowercycleof7,whichis7.
1957
1982
3. Whatisthefirstnonzerointegerfromtherightin8330 +8370 ?
(a)3
(b)1
(c)9
(d)noneofthese
Solution:
1982
8370 willendwithmorenumberofzeroessoweneedtoconsideronlythefirstpart.Rightmostnon-zerointegerofthe
1957
1957
expressionwillbe=unitdigitof833 =unitdigitof3 Since,1957=4k+1,takethefirstdigitinthepowercycleof3,whichis3.
1!+2!+3!+…..+13!
1!+2!+3!....+28!
1!+2!+3!+…....+32!
1!+2!+3!+…....+67!
4. IfN=(13)
+(28)
+(32)
+(67)
thentheunitdigitofNis
(a)4
(b)8
(c)2
(d)noneofthese
Solution:
BasedonPowerCycle
After4!Everynumberisoftheform4k+4,hereinallfourtermspowerbecomes4k+1.Sotakingthefirstdigitfromthepower
cyclesof3,8,2,and7wewillgettheunitdigitasi.e3+8+2+7=4.Ans=0
3)Usefultechniquetofindthelast2digitsofanyexpressionoftheformab
Dependingonthelastdigitofthenumberinquestion,wecanfindthelasttwodigitsofthatnumber.
Wecanclassifythetechniquetobeappliedinto4categories.
TYPE
METHOD
EXAMPLES
67
1)Numbersendingin1
Thelastdigitisalways1.
1)21 =__41(2x7=__4)
nd
87
The2 lastdigit=productoftens
2)41 =__81(4x7=__8)
digitofbase*unitdigitofthe
167
power.
3)1261 =__21(6x7=__2)
67
In21 ;2isthetensdigitofbaseand 124
7istheunitdigitofpower
4)31 =__21(3x4=__2)
Visit: www.testcracker.in
Contact: [email protected]
Call: 9035001996
For Reviews or Testimonials visit us on www.facebook.com/testcracker
CAT
2)Numberendingwith5
Tens power Unit
Second
digit
digit
last
of
digit
base
Odd
Odd
5
7
Odd
Even
5
2
Even Odd
5
2
Even Even
5
2
Changethepowersothatthebase
endswith1andthenusethesame
techniqueasforthosenumbers
endingwith1.
4
4
2
eg)3 ,7 &9 allwillendin1.
3)Numbersendingin3,7,9
4)Forevennumbers(2,4,6,8)
Usethepatternofthenumber1024
10
=2 i.e.
10
x2 raisedtoevenpowerendswith
76and
10
x2 raisedtooddpowerendswith
24.
34
e.g.)1555 =__25
288
4 72
4
e.g.)17 =(17 ) (takingpower4as7 willendin1.
2
2 72
(17 x17 ) 72
2
=(_89*_89) (aslast2digitsof17 =89)
72
=(_21) (aslast2digitsof89*89=21)
Answer=__41(as2*2=4)
788
10 78
8
e.g.)2 =(2 ) x2 =
__76x__56=__56.
Itisalsoimportanttonotethat,
F 76multipliedbythelast2digitsofanypowerof2willendinthesamelast2digits
E.g.76x04=04,76x08=08,76x16=16,76x32=32
2
2
2
2
2
2
2
2
2
F Thelasttwodigitsof,x ,(50-x) ,(50+x) ,(100-x) willalwaysbethesame.Forexamplelast2digitsof12 ,38 ,62 ,88 ,112 ….
willallbethesame.
2
2
2
2
2
2
2
2
Also,lasttwodigitsof11 =39 =61 =89 =111 =139 =161 =189 andsoon
3.Tofindthesquaresofnumbersfrom30-70wecanusethefollowingmethod
2
Tofind41 Step1:Differencefrom25willbefirst2digits=16
Step2:Squareofthedifferencefrom50willbelast2digits=81.Answer=1681.
2
Tofind43 Step1:Differencefrom25willbefirst2digits=18
Step2:Squareofthedifferencefrom50willbelast2digits=49.Answer=1849
Combiningallthesetechniqueswecanfindthelast2digitsforanynumberbecauseeveryevennumbercanbewrittenas2*an
oddnumber
4)“MINIMUMOFALL”REGIONSINVENNDIAGRAMS
1. Inasurveyconductedamong100meninacompany,100menusebrandA,75usebrandB,80usebrandC,90usebrandD&
60usebrandEofthesameproduct.Whatistheminimumpossiblenumberofmenusingallthe5brands,ifallthe100men
useatleastoneofthesebrands? Visit: www.testcracker.in
Contact: [email protected]
Call: 9035001996
For Reviews or Testimonials visit us on www.facebook.com/testcracker
CAT
Sumofthedifferencefrom100=(100-100)+(100-75)+(100-80)+(100-90)+(100-60)=95
Againtakethedifferencefrom100=5(answer)
Thismethodwillbeexplainedindetailinthenextbooklet.
5)SIMILARTODIFFERENTGROUPINGINPERMUTATION&COMBINATION
AllquestionsinPermutationandCombinationfallinto4categories,andifyoumasterthese4categories,youcanunderstandall
conceptsinP&Ceasily.
(i)SimilartoDifferent
(ii)DifferenttoSimilar
(iii)SimilartoSimilar
(iv)DifferenttoDifferent
Inthisbooklet,wewilllookatthefirstcategory;i.e.SimilartoDifferent,whichentailsthenumberofwaysofdividing‘n’
identical(similar)thingsinto‘r’distinct(different)groups
(a)NOLIMITQUESTIONS
Letmeexplainthiswithanexample.SupposeIhave10identicalchocolatestobedividedamong3people.The10chocolates
needtobedistributedinto3partswhereapartcanhavezeroormorechocolates.
Soletusrepresentchocolatesbyblueballs.Thestraightredlinesareusedtodividethemintoparts.Soyoucanseethatfor
dividinginto3parts,youneedonlytwolines.
st
nd
rd
Supposeyouwanttogive1 person1chocolate,2 3chocolatesand3 6chocolates.Thenyoucanshowitas:
Supposeyouwanttogiveoneperson1chocolate,anotherperson6chocolatesandanotherone3,thenitcanberepresented
as:
Nowiffirstpersongets0,secondgets1andthirdgets9chocolatesthenitcanberepresentedas:
Nowsupposeyouwanttogivefirstperson0,secondalso0andthirdallof10thenyoucanshowitlike:
So,fordividing10identicalchocolatesamong3personsyoucanassumetohave12(10balls+2sticks)thingsamongwhichten
areidenticalandrest2aresameandofonekind.Sonumberofwaysinwhichyoucandistributetenchocolatesamong3
peopleisthesameinwhichyoucanarrange12thingsamongwhich10areidenticalandofonekindwhile2areidenticalandof
onekindwhichcanbedonein12!/(10!2!)
The above situation is same as finding the number of positive integral solutions of a + b + c = 10. a, b, c is the number of
chocolatesgiventodifferentpersons.
st
OrelseIcanalsosayhowmanyintegralpointslieonthelinea+b+c=10inthe1 quadrant.Inboththecasestheansweris
12
C2.
Visit: www.testcracker.in
Contact: [email protected]
Call: 9035001996
For Reviews or Testimonials visit us on www.facebook.com/testcracker
CAT
(b)LOWERLIMITQUESTIONS
Nowsupposewehavearestrictionthatthegroupscannotbeemptyi.e.intheaboveexampleall3personsshouldgetatleast
1.
Youhavetodividetenchocolatesamong3personssothateachgetsatleastone.Sointhestartonlygivethemoneeach.This
you will do in just 1 way as all the chocolates are identical. Now, you are left with 7 chocolates and you have to divide them
among3peopleinsuchthatwaythateachgets0ormore.Youcandothiseasilyasexplainedaboveusingballsandsticks.
Numberofways=9!/(7!2!).
Theabovesituationissameasfindingthenumberofpositivenaturalnumbersolutionsofa+b+c=10.a,b,cisthenumber
ofchocolatesgiventodifferentpersons.
st
OrelseIcanalsosayhowmanyintegralnaturalpointslieonthelinea+b+c=10inthe1 quadrant.
9
Inboththecasestheansweris C2.
NowsupposeIchangethequestionandsaythatnowyouhavetodivide10chocolatesamong3personsinsuchawaythatone
getsatleast1,secondatleast2andthirdatleast3.
It’sassimpleasthelastone.Firstfullfilltherequiredcondition.
st
Give1 person1,second2andthird3andthendividetheleft4(10–1–2-3)chocolatesamongthose3insuchawaythateach
getsatleast1.
6
Thisissameasarranging4ballsand2stickswhichcanbedonein C2ways.
Theabovesituationissameasfindingthenumberofpositiveintegralsolutionsof
a+b+c=10suchthata≥1,b≥2,c≥3.a,b,cisthenumberofchocolatesgiventodifferentpersons.
9
Inthiscasetheansweris C2.
2. Rajeshwenttothemarkettobuy18fruitsinall.Ifthereweremangoes,bananas,applesandorangesforsaletheninhow
manywayscouldRajeshbuyatleastonefruitofeachkind?
17
18
21
21
(a) C3 (b) C4 (c) C3 (d) C4
Solution:
ThisisaGroupingtype1SimilartoDistinctquestion,withalowerlimitcondition.
M+B+A+O=18
Removeonefromeachgroup,therefore4issubtractedfrombothsides.Theproblemchangesto
M+B+A+O=14
Usingourshortcut,Theansweristhearrangementof14ballsand3sticks
17
i.e. C3
3. Therearefourballstobeputinfiveboxeswhereeachboxcanaccommodateanynumberofballs.Inhowmanywayscan
onedothisif:
(a)Ballsaresimilarandboxesaredifferent
(1)275 (2)70 (3)120 (4)19
Solution:Whentheballsaresimilarandtheboxesaredifferent,it’sagroupingtype1question
8
A+B+C+D+E=4,whereA,B,C,D,Earethedifferentboxes.Thenumberofwaysofselectionanddistribution= C4=70
4. Thenumberofnon-negativeintegralsolutionsofA+B+C≤10
(a)84 (b)286 (c)220 (d)noneofthese
Bynon-negativeintegralsolutions,theconditionsimplythatwecanhave0andnaturalnumbervaluesforA,B,C,andD
Toremovethesign≤addanotherdummyvariablex4.Theproblemchangesto
A+B+C+D=10
Thisisanexampleofgroupingtype1(SimilartoDistinct)
Itisthearrangementof10ballsand3sticks.
13
Usingtheshortcutofballsandsticks,Thereforetheansweris C3=286
Visit: www.testcracker.in
Contact: [email protected]
Call: 9035001996
For Reviews or Testimonials visit us on www.facebook.com/testcracker
CAT
6)APPLICATIONOFFACTORIALS
AthoroughunderstandingofFactorialsisimportantbecausetheyplayapivotalrolenotonlyinunderstandingconceptsin
NumbersbutalsootherimportanttopicslikePermutationandCombination
DefinitionofFactorialàN!=1x2x3x…x(n-1)xn
E.g.1)5!=1x2x3x4x5=120e.g.2)3!=1x2x3=6
LetusnowlookattheapplicationofFactorials
(I)Highestpowerinafactorialorinaproduct
QuestionsbasedonhighestpowerinafactorialareseenyearafteryearinCAT.Questionsbasedonthiscanbecategorized
basedonthenatureofthenumber(primeorcomposite)whosehighestpowerwearefindinginthefactorial,i.e
(ii)Highestpowerofaprimenumberinafactorial:
Tofindthehighestpowerofaprimenumber(x)inafactorial(N!),continuouslydivideNbyxandaddallthequotients.
1. Thehighestpowerof5in100!
Solution:
100/5=20;20/5=4;Addingthequotients,its20+4=24.Sohighestpowerof5in100!=24
ALTERNATIVEMETHOD
2
2
100/5+100/5 =20+4=24(Wetakeupto5 asitisthehighestpowerof5whichislessthan100)
(iii)Highestpowerofacompositenumberinfactorial
Factorizethenumberintoprimes.Findthehighestpowerofalltheprimenumbersinthatfactorialusingthepreviousmethod.
Taketheleastpower.
2. Tofindthehighestpowerof10in100!
Solution:Factorize10=5*2.
1.Highestpowerof5in100!=24 2.Highestpowerof2in100!=97
Therefore,theanswerwillbe24,becausetogeta10,youneedapairof2and5,andonly24suchpairsareavailable.Sotakethe
lesseri.e.24istheanswer.
3. Highestpowerof12in100!
2
2
Solution:12=2 *3.Findthehighestpowerof2 and3in100!
Firstfindoutthehighestpowerof2.
Listingoutthequotients:100/2=50;50/2=25;25/2=12;12/2=6;6/2=3;3/2=1
2
2
Highestpowerof2=50+25+12+6+3+1=97.Sohighestpowerof2 =48(outof972’sonly48canmake2 )
Nowforthehighestpowerof3.100/3=33;33/3=11;11/3=3;3/3=1;
Highestpowerof3=48,Highestpowerof12=48
(iv)Numberofzeroesintheendofafactorialoraproduct
Findingthenumberofzeroesformsthebaseconceptforanumberofapplicationquestions.Inbase10,numberofzerosinthe
enddependsonthenumberof10s;i.e.effectively,onthenumberof5s
F InbaseN,numberofzeroesintheendhighestpowerofNinthatproduct
4. Findthenumberofzeroesin13!Inbase10
Solution:Weneedtoeffectivelyfindthehighestpowerof10in13!=Highestpowerof5in13!Asthispowerwillbelesser.
13/5=2
5. Findthenumberofzeroesintheendof15!inbase12.
2
Solution:Highestpowerof12in15!=highestpowerof2 *3in15!=Highestpowerof3in15!=5
Visit: www.testcracker.in
Contact: [email protected]
Call: 9035001996
For Reviews or Testimonials visit us on www.facebook.com/testcracker
CAT
(V)Numberoffactorsofanyfactorial
Thereisatechnique,whichcanbeusedtofindthenumberoffactorsinafactorial
6. Findthefactorsof12!
10
5
2
STEP1:Primefactorize12!i.e.findoutthehighestpowerofallprimefactorstill12(i.e.2,3,5,7,11).12!=2 x3 x5 x7x11
STEP2:Usetheformula
m
n
N=a *b (a,baretheprimefactors).Thennumberoffactors=(m+1)(n+1)
Thenumberoffactors=(10+1)(5+1)(2+1)(1+1)(1+1)=792.Answer=792
(VI)Rightmostnonzerointegerinafactorial
7. Whatisthelastnon–zerodigitof20!
Solution:Usingabovepropertywecanwrite:
1x2x3x4x5x6x7x8x9x10=4x
11x12x13x14x15x16x17x18x19x20=4x
Solastnon–zerodigitof20!= xlastnon–zerodigitof4!=lastnon–zerodigitof6x4=4
APPLICATIONQUESTIONBASEDONFACTORIAL
8. Howmanynaturalnumbersaretheresuchthattheirfactorialsareendingwith5zeroes?
10!is1x2x3x4x(5)x6x7x8x9x(2x5).Fromthiswecanseethathighestpowerof5till10!is2.Continuinglikethis,10!-14!,highest
powerof5willbe2.Thenext5willbeobtainedat15=(5*3).
Therefore,from15!To19!-Thehighestpowerof5willbe3.
20!-24!–HighestPower=4,In25,wearegettingoneextrafive,as25=5x5.Therefore,25!to29!,wewillgethighestpowerof
5as6.Theanswertothequestionistherefore,0.Therearenonaturalnumberswhosefactorialsendwith5zeroes.
7)USEOFGRAPHICALDIVISIONINGEOMETRY
Let’slookatatechniquewhichwillhelpyousolveageometryquestioninnotime
1. ABCDisasquareandEandFarethemidpointsofABandBCrespectively.FindtheratioofArea(ABCD):Area(DEF)?
Let’sdividethefigureusingdottedlinesasshowninFigureB.AreaofABCD=100%.AreaAEDG=50%.ThenAreainshadedregion
1(AED)=25%.Similarly,DCFH=50%.Areainshadedregion2(DCF)=25%.NowAreaofEOFB=25%..Areaofshadedregion3(BEF)
=12.5%.Totalareaoutsidetriangle=62.5%.Areainsidetriangle=100-62.5=37.5%.Requiredratio=100/37.5=8:3
8)ASSUMPTIONmethod
Thereareatleast10questionsoutof25inCAT2007whereyoucanapplythistechnique.Thisinvolvesassumingsimplevalues
forthevariablesinthequestions,andsubstitutinginansweroptionsbasedonthosevalues.Assumptionhelpstotremendously
speeduptheprocessofevaluatingtheanswerasshownbelow.
2
2
2
1. k&2k arethetworootsoftheequationx –px+q.Findq+4q +6pq=
2
3
3
(a)q (b)p (c)0(d)2p
Solution:Assumeanequationwithroots1&2(k=1)
2
=>p(sumofroots)=3andq(productofroots)=2.Substituteinq+4q +6pq=54.Lookintheansweroptionsfor54on
3
3
substitutingvaluesofp=3andq=2.weget2p =54.=>Answer=2p .
Visit: www.testcracker.in
Contact: [email protected]
Call: 9035001996
For Reviews or Testimonials visit us on www.facebook.com/testcracker
CAT
3
3
2. Let‘x’bethearithmeticmeanandy,zbethetwogeometricmeansbetweenanytwopositivenumbers.Thevalueof(y +z )/
(xyz)is
(a)2 (b)3 (c)1/2 (d)3/2
Solution:AssumeaGP1111thenx=1,y=1z=1.Answeronsubstitution=2,whichwillmakethecalculationevenfaster,
halfoftheproblemsinAlgebracanbesolvedusingassumption.Thisisnotdirectsubstitution.Inthenexte.g.:seehowyoucan
usethesametechniqueinanequationquestion.
vSOMEACTUALQUESTIONSFROMCATSOLVEDUSINGTHISTECHNIQUE
1. ConsiderthesetS={2,3,4……2n+1),wherenisapositiveintegerlargerthan2007.DefineXastheaverageofoddintegersinS
andYastheaverageoftheevenintegersinS.WhatisthevalueofX-Y?
(a)1
(b)n/2 (c)(n+1)/2n
(d)2008
(e)0
Solution:Thequestionisindependentofn,whichisshownbelow.
Taken=2.ThenS={2,3,4,5).X=4andY=3.X-Y=1,Taken=3.thenS={2,3,4,5,6,7}.X=5andY=4.X-Y=1
Henceyoucandirectlymarktheansweroption(a).Youcansolvethequestioninlessthan60seconds.
2. LetSbethesetofallpairs(i,j)where1≤i<j≤nandn≥4.AnytwodistinctmembersofSarecalledfriends,iftheyhaveone
constituentofthepairsincommonand“enemies”otherwise.Forexample,ifn=4,thenS={(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)}.
Here(1,2),(1,3)arefriendsbut(1,4),(2,3)areenemies.Forgeneraln,consideranytwomembersofSthatarefriends.How
manyothermembersofSwillbecommonfriendsofthesemembers?
2
2
(a)2n-6 (b)n/2(n-3)
(c)n-2 (d)(n -7n+16)/2 e)(n -5n+8)/2
Solution:Wewillstartwithn=5,thenyouwillgettwooptions(c)and(d).
Nowtaken=6,letstaketwomembers(1,2)and(1,3).Thentheircommonfriendswillbe(1,4),(1,5),(1,6)and(2,3).i.eFour
commonfriends.Sosubstituten=6amongansweroptionsandcheckwhereyougetanswer4.Onlyoption(c).
There were more questions which could be solved using similar strategies. The methods given above clearly show that for
someonewithgoodconceptualknowledgeandrightstrategiesthequantsectionisacakewalk.
………………………………………………………………………………………………………………………………………………….....................................
AboutthetrainersofTestCracker
F AshankisunarguablyIndia'sbestQuanttrainerand100%ilerofCAT–15(Qunat).HehastrainednumerousCAT
topperseversincetheCATwentonline,including99.9%tilersofCAT2015–Shrikanth,Rushil,Sandeep,Abhilasha,
Prakhar,Pratik,Shivanitonameafew.
F Yashaswi,analumnusofIITKharagpur&XLRIJamshedpur,hassuccessfullytrainedhundredsofIIMhopefulsinthe
last7years.AspirantstrainedbyhimarecurrentstudentsandalumniofIIMs,XLRI&otherleadingB-schools.Brute
ForceMethodologyishistrademarkedapproachtotacklecompetitiveexamssuccessfullywithintheshortesttime
span.HehascrackedCATmultipletimes.Hehasscored99.7%ileinCAT2014and99.98%ileinXAT2015.
Visit: www.testcracker.in
Contact: [email protected]
Call: 9035001996
For Reviews or Testimonials visit us on www.facebook.com/testcracker
CAT
Testimonials
Ravi Shankar (IIM A) “WELL!!! They say hard work never goes in vain and "Dene wala jab bhi deta , deta chappar
phaar ke.." I will take this opportunity to present a huge token of appreciation to the TestCracker Team due to which I
could crack IIM Ahemdadabd, IIM Bangalore, IIM Calcutta, ISB Hyderabad and XLRI BM.. I guess the results
themselves speak of the caliber of the faculty members of TestCracker and their unparalleled devotion to the students..
Was really lucky to be guided by such a marvelous team... Keep up the good work TestCracker and you guys are surely
on the way to become the numero uno test prep institute in India!!!!!!!!!!!!!”
Vivek Murthy (IIM A): I would like to take this opportunity to thank everybody at TestCracker Team, without whose
support I wouldn't have been able to convert my IIM A Call. My heartfelt gratitude to the highly dedicated faculty of
TC, Ashank Sir, Yashaswi Sir...who motivated me, guided me and helped me crack the best interview call I had!
Sonali Gupta (IIM B): This is where you should be in order to realize your dream. The quality of education, the intensity of
personalattentionandvalueforyourmoneyisunmatched.ItwasallbecauseofTestCrackerandtheteamthatIhavefinally
achievedwhatIalwayswantedto.Thankyouforeverything.
DeeptiKini(IIMC):Igottosayonlyonething-theyareawesome.Ihaveseenmyselftransformfromgivingcrappyinterviewsto
convertingoneofthebestcallsthatIhad-allthankstoYashaswisir.Onceyoujoin,youareassuredpersonalizedtraining.They
areavailablewheneveryouneedthemandyoucanbugthemasmuchasyouwant,theyarealwayshappytohelp!
AlanIdicular(IIMC):Nevergotachancetosayit,sohereIformallydothis.....ThanksalotAshanksirndYashsir....Ioweittou
bigtime....convertedeverycallthatIhad...Thanksagain...
ShriKanthJuneja(IIMC):TodayismyfirstdayofmyMBAprogrammeatIIMC.Ican'tthankAshankandYashashwienoughfor
helpingmethroughthisjourney.AshanksimplifiedQuant,DataInterpretationandLogicalReasoningconceptshelpingmebreak
down tough problems at a speed I didn't think was possible before. Yashashwi's Group Discussion and Personal Interview
sessionsareoneofthebestknowledge-enhancing,confidence-boostingsessionsonecanattend.
ShivaniYadav(IIMC):ImadeittomydreamcollegeIIMC,andIoweTestcrackerandAshankSir..bigtimeforallthehelpand
supporttheyprovided.ConvertingeachandeverycallIhad,would'nthavebeenpossiblewithouttheirexcellentmaterialand
support.
Srinivas Guptha Kapaganti (IIM – L): “I have seen many ads of coaching institutes quoting "personal attention and
feedback" but never experienced it...In test cracker I have met a person called yashaswi whose guidance is no less than
that of an elder brother... constantly building up ur strengths...suggesting ways to cover up ur weaknesses...making u
up to date with whats happening...inculcating "can do" attitude in u right from day one...and the list goes on.
I have taken GD-PI course in testcracker and coneverted almost all my calls that I got and am joining IIMLucknow.Just dont go by the looks of the institute..talk to yashaswi once and I bet you cannot think of going anywhere
else for preparation....Thanks yashaswi and testcracker”
Archit Aroara (XLRI Jamshedpur): “Kudos to Ashank sir for the indispensable quant lessons and Yash sir for
extensive support during the interviews and changing my.approach towards MBA entrance exams. In the past, a
distorted self-image prevented me from identifying areas that warranted improvement—a major stumbling block in
cracking these exams. Test Cracker quickly uncovered the problem and provided me extensive study material along
with emphasis on solving myriad of problems in the classroom itself which helped me in tracking the preparation. I
hope these lessons will serve me as I begin to climb the leadership ladder. Keep up the good job!! Test Cracker is right
on track to become the #1 coaching choice in Bengaluru”
Visit: www.testcracker.in
Contact: [email protected]
Call: 9035001996
For Reviews or Testimonials visit us on www.facebook.com/testcracker