CAT AreYou PreparingFor CAT2017? Problem Solving Techniques Booklet By Ashank Dubey (CAT 100%iler) Visit: www.testcracker.in Contact: [email protected] Call: 9035001996 For Reviews or Testimonials visit us on www.facebook.com/testcracker CAT QUANTTECHNIQUESBYTESTCRACKER INDEX (1)CONSTANTPRODUCTRULE (2)POWERCYCLE (3)“MINIMUMOFALL”REGIONSINVENNDIAGRAMS (4)LAST2DIGITSTECHNIQUE (5)SIMLIARTODIFFERENTGROUPING(P&C) (6)APPLICATIONOFFACTORIALS (7)GRAPHICALDIVISIONFORGEOMETRY (8)ASSUMPTIONMETHOD (1)CONSTANTPRODUCTRULE(1/x)&1/(x+1) Thisrulecanbeappliedwhenwehavetwoparameterswhoseproductisconstant,orinotherwords,whentheyareinversely proportionaltoeachother. e.g.)TimexSpeed=Distance,Pricexconsumption=Expenditure,Lengthxbreadth=Area A1/xincreaseinoneoftheparameterswillresultina1/(x+1)decreaseintheother,Parameteriftheparametersare inverselyproportional. Let’sseetheapplicationwiththefollowingexamples 1. Amantravelsfromhishometoofficeat4km/hrandreacheshisoffice20minlate.Ifthespeedhadbeen6km/hrhewould havereached10minearly.Findthedistancefromhishometooffice? Solution:Assumeoriginalspeed=4km/hr.Percentageincreaseinspeedfrom4to6=50%or½.1/2increaseinspeedwillresult in1/3decreaseinoriginaltime=30minutes.(fromgivendata).Originaltime=90minutes=1.5hoursàAnswerisDistance= 4x1.5=6km 2. A20%increaseinpriceofsugar.Findthe%decreaseinconsumptionafamilyshouldadoptsothattheexpenditureremains constant Solution:Herepricexconsumption=expenditure(constant) Usingthetechnique,20%(1/5)increaseresultsin16.66%(1/6)decreaseinconsumption.Answer=16.66% (2)POWERCYCLE b Thelastdigitofanumberoftheforma fallsinaparticularsequenceororderdependingontheunitdigitofthenumber(a)and thepowerthenumberisraisedto(b).Thepowercycleofanumberthusdependsonits’unitdigit. Considerthepowercycleof2 1 5 2 =2, 2 =32 2 6 2 =4 2 =64 3 7 2 =8 2 =128 4 8 2 =16 2 =256 th Asitcanbeobserved,theunitdigitgetsrepeatedafterevery4 powerof2.Hence,wecansaythat2hasapowercycleof 2,4,8,6withfrequency4. Thismeansthat,anumberoftheform 4k+1 2 willhavethelastdigitas2 4k+2 2 willhavethelastdigitas4 4k+3 2 willhavethelastdigitas8 4k+4 2 willhavethelastdigitas6(wherek=0,1,2,3…) Thisisapplicablenotonlyfor2,butforallnumbersendingin2. Thereforetofindthelastdigitofanumberraisedtoanypower,wejustneedtoknowthepowercycleofdigitsfrom0to9, whicharegivenbelow Visit: www.testcracker.in Contact: [email protected] Call: 9035001996 For Reviews or Testimonials visit us on www.facebook.com/testcracker CAT Unitdigit 0 1 2 3 4 5 6 7 8 9 Powercycle 0 1 2,4,8,6 3,9,7,1 4,6 5 6 7,9,3,1 8,4,2,6 9,1 Frequency 1 1 4 4 2 1 1 4 4 2 Forexample 75 1. Findtheremainderwhen3 isdividedby5. (a)Expresspowerintheform,4k+xwherex=1,2,3,4.Inthiscase75=4k+3. (b)Takethepowercycleof3whichis3,9,7,1.Sincetheformis4k+3,takethethirddigitinthecycle,whichis7 Anynumberdividedby5,theremainderwillbethatoftheunitdigitdividedby5.Hencetheremainderis2. Sometimes,youmaygetaquestioninthetermofvariables,whereyouneedtosubstitutevaluestogettheanswerinthefastest waypossible. Forexample, 3^4n 2. Findtheunitdigitof7 3^4 81. Putn=1,theproblemreducesto7 ,whichis7 Since81=4k+1,takethefirstdigitinthepowercycleof7,whichis7. 1957 1982 3. Whatisthefirstnonzerointegerfromtherightin8330 +8370 ? (a)3 (b)1 (c)9 (d)noneofthese Solution: 1982 8370 willendwithmorenumberofzeroessoweneedtoconsideronlythefirstpart.Rightmostnon-zerointegerofthe 1957 1957 expressionwillbe=unitdigitof833 =unitdigitof3 Since,1957=4k+1,takethefirstdigitinthepowercycleof3,whichis3. 1!+2!+3!+…..+13! 1!+2!+3!....+28! 1!+2!+3!+…....+32! 1!+2!+3!+…....+67! 4. IfN=(13) +(28) +(32) +(67) thentheunitdigitofNis (a)4 (b)8 (c)2 (d)noneofthese Solution: BasedonPowerCycle After4!Everynumberisoftheform4k+4,hereinallfourtermspowerbecomes4k+1.Sotakingthefirstdigitfromthepower cyclesof3,8,2,and7wewillgettheunitdigitasi.e3+8+2+7=4.Ans=0 3)Usefultechniquetofindthelast2digitsofanyexpressionoftheformab Dependingonthelastdigitofthenumberinquestion,wecanfindthelasttwodigitsofthatnumber. Wecanclassifythetechniquetobeappliedinto4categories. TYPE METHOD EXAMPLES 67 1)Numbersendingin1 Thelastdigitisalways1. 1)21 =__41(2x7=__4) nd 87 The2 lastdigit=productoftens 2)41 =__81(4x7=__8) digitofbase*unitdigitofthe 167 power. 3)1261 =__21(6x7=__2) 67 In21 ;2isthetensdigitofbaseand 124 7istheunitdigitofpower 4)31 =__21(3x4=__2) Visit: www.testcracker.in Contact: [email protected] Call: 9035001996 For Reviews or Testimonials visit us on www.facebook.com/testcracker CAT 2)Numberendingwith5 Tens power Unit Second digit digit last of digit base Odd Odd 5 7 Odd Even 5 2 Even Odd 5 2 Even Even 5 2 Changethepowersothatthebase endswith1andthenusethesame techniqueasforthosenumbers endingwith1. 4 4 2 eg)3 ,7 &9 allwillendin1. 3)Numbersendingin3,7,9 4)Forevennumbers(2,4,6,8) Usethepatternofthenumber1024 10 =2 i.e. 10 x2 raisedtoevenpowerendswith 76and 10 x2 raisedtooddpowerendswith 24. 34 e.g.)1555 =__25 288 4 72 4 e.g.)17 =(17 ) (takingpower4as7 willendin1. 2 2 72 (17 x17 ) 72 2 =(_89*_89) (aslast2digitsof17 =89) 72 =(_21) (aslast2digitsof89*89=21) Answer=__41(as2*2=4) 788 10 78 8 e.g.)2 =(2 ) x2 = __76x__56=__56. Itisalsoimportanttonotethat, F 76multipliedbythelast2digitsofanypowerof2willendinthesamelast2digits E.g.76x04=04,76x08=08,76x16=16,76x32=32 2 2 2 2 2 2 2 2 2 F Thelasttwodigitsof,x ,(50-x) ,(50+x) ,(100-x) willalwaysbethesame.Forexamplelast2digitsof12 ,38 ,62 ,88 ,112 …. willallbethesame. 2 2 2 2 2 2 2 2 Also,lasttwodigitsof11 =39 =61 =89 =111 =139 =161 =189 andsoon 3.Tofindthesquaresofnumbersfrom30-70wecanusethefollowingmethod 2 Tofind41 Step1:Differencefrom25willbefirst2digits=16 Step2:Squareofthedifferencefrom50willbelast2digits=81.Answer=1681. 2 Tofind43 Step1:Differencefrom25willbefirst2digits=18 Step2:Squareofthedifferencefrom50willbelast2digits=49.Answer=1849 Combiningallthesetechniqueswecanfindthelast2digitsforanynumberbecauseeveryevennumbercanbewrittenas2*an oddnumber 4)“MINIMUMOFALL”REGIONSINVENNDIAGRAMS 1. Inasurveyconductedamong100meninacompany,100menusebrandA,75usebrandB,80usebrandC,90usebrandD& 60usebrandEofthesameproduct.Whatistheminimumpossiblenumberofmenusingallthe5brands,ifallthe100men useatleastoneofthesebrands? Visit: www.testcracker.in Contact: [email protected] Call: 9035001996 For Reviews or Testimonials visit us on www.facebook.com/testcracker CAT Sumofthedifferencefrom100=(100-100)+(100-75)+(100-80)+(100-90)+(100-60)=95 Againtakethedifferencefrom100=5(answer) Thismethodwillbeexplainedindetailinthenextbooklet. 5)SIMILARTODIFFERENTGROUPINGINPERMUTATION&COMBINATION AllquestionsinPermutationandCombinationfallinto4categories,andifyoumasterthese4categories,youcanunderstandall conceptsinP&Ceasily. (i)SimilartoDifferent (ii)DifferenttoSimilar (iii)SimilartoSimilar (iv)DifferenttoDifferent Inthisbooklet,wewilllookatthefirstcategory;i.e.SimilartoDifferent,whichentailsthenumberofwaysofdividing‘n’ identical(similar)thingsinto‘r’distinct(different)groups (a)NOLIMITQUESTIONS Letmeexplainthiswithanexample.SupposeIhave10identicalchocolatestobedividedamong3people.The10chocolates needtobedistributedinto3partswhereapartcanhavezeroormorechocolates. Soletusrepresentchocolatesbyblueballs.Thestraightredlinesareusedtodividethemintoparts.Soyoucanseethatfor dividinginto3parts,youneedonlytwolines. st nd rd Supposeyouwanttogive1 person1chocolate,2 3chocolatesand3 6chocolates.Thenyoucanshowitas: Supposeyouwanttogiveoneperson1chocolate,anotherperson6chocolatesandanotherone3,thenitcanberepresented as: Nowiffirstpersongets0,secondgets1andthirdgets9chocolatesthenitcanberepresentedas: Nowsupposeyouwanttogivefirstperson0,secondalso0andthirdallof10thenyoucanshowitlike: So,fordividing10identicalchocolatesamong3personsyoucanassumetohave12(10balls+2sticks)thingsamongwhichten areidenticalandrest2aresameandofonekind.Sonumberofwaysinwhichyoucandistributetenchocolatesamong3 peopleisthesameinwhichyoucanarrange12thingsamongwhich10areidenticalandofonekindwhile2areidenticalandof onekindwhichcanbedonein12!/(10!2!) The above situation is same as finding the number of positive integral solutions of a + b + c = 10. a, b, c is the number of chocolatesgiventodifferentpersons. st OrelseIcanalsosayhowmanyintegralpointslieonthelinea+b+c=10inthe1 quadrant.Inboththecasestheansweris 12 C2. Visit: www.testcracker.in Contact: [email protected] Call: 9035001996 For Reviews or Testimonials visit us on www.facebook.com/testcracker CAT (b)LOWERLIMITQUESTIONS Nowsupposewehavearestrictionthatthegroupscannotbeemptyi.e.intheaboveexampleall3personsshouldgetatleast 1. Youhavetodividetenchocolatesamong3personssothateachgetsatleastone.Sointhestartonlygivethemoneeach.This you will do in just 1 way as all the chocolates are identical. Now, you are left with 7 chocolates and you have to divide them among3peopleinsuchthatwaythateachgets0ormore.Youcandothiseasilyasexplainedaboveusingballsandsticks. Numberofways=9!/(7!2!). Theabovesituationissameasfindingthenumberofpositivenaturalnumbersolutionsofa+b+c=10.a,b,cisthenumber ofchocolatesgiventodifferentpersons. st OrelseIcanalsosayhowmanyintegralnaturalpointslieonthelinea+b+c=10inthe1 quadrant. 9 Inboththecasestheansweris C2. NowsupposeIchangethequestionandsaythatnowyouhavetodivide10chocolatesamong3personsinsuchawaythatone getsatleast1,secondatleast2andthirdatleast3. It’sassimpleasthelastone.Firstfullfilltherequiredcondition. st Give1 person1,second2andthird3andthendividetheleft4(10–1–2-3)chocolatesamongthose3insuchawaythateach getsatleast1. 6 Thisissameasarranging4ballsand2stickswhichcanbedonein C2ways. Theabovesituationissameasfindingthenumberofpositiveintegralsolutionsof a+b+c=10suchthata≥1,b≥2,c≥3.a,b,cisthenumberofchocolatesgiventodifferentpersons. 9 Inthiscasetheansweris C2. 2. Rajeshwenttothemarkettobuy18fruitsinall.Ifthereweremangoes,bananas,applesandorangesforsaletheninhow manywayscouldRajeshbuyatleastonefruitofeachkind? 17 18 21 21 (a) C3 (b) C4 (c) C3 (d) C4 Solution: ThisisaGroupingtype1SimilartoDistinctquestion,withalowerlimitcondition. M+B+A+O=18 Removeonefromeachgroup,therefore4issubtractedfrombothsides.Theproblemchangesto M+B+A+O=14 Usingourshortcut,Theansweristhearrangementof14ballsand3sticks 17 i.e. C3 3. Therearefourballstobeputinfiveboxeswhereeachboxcanaccommodateanynumberofballs.Inhowmanywayscan onedothisif: (a)Ballsaresimilarandboxesaredifferent (1)275 (2)70 (3)120 (4)19 Solution:Whentheballsaresimilarandtheboxesaredifferent,it’sagroupingtype1question 8 A+B+C+D+E=4,whereA,B,C,D,Earethedifferentboxes.Thenumberofwaysofselectionanddistribution= C4=70 4. Thenumberofnon-negativeintegralsolutionsofA+B+C≤10 (a)84 (b)286 (c)220 (d)noneofthese Bynon-negativeintegralsolutions,theconditionsimplythatwecanhave0andnaturalnumbervaluesforA,B,C,andD Toremovethesign≤addanotherdummyvariablex4.Theproblemchangesto A+B+C+D=10 Thisisanexampleofgroupingtype1(SimilartoDistinct) Itisthearrangementof10ballsand3sticks. 13 Usingtheshortcutofballsandsticks,Thereforetheansweris C3=286 Visit: www.testcracker.in Contact: [email protected] Call: 9035001996 For Reviews or Testimonials visit us on www.facebook.com/testcracker CAT 6)APPLICATIONOFFACTORIALS AthoroughunderstandingofFactorialsisimportantbecausetheyplayapivotalrolenotonlyinunderstandingconceptsin NumbersbutalsootherimportanttopicslikePermutationandCombination DefinitionofFactorialàN!=1x2x3x…x(n-1)xn E.g.1)5!=1x2x3x4x5=120e.g.2)3!=1x2x3=6 LetusnowlookattheapplicationofFactorials (I)Highestpowerinafactorialorinaproduct QuestionsbasedonhighestpowerinafactorialareseenyearafteryearinCAT.Questionsbasedonthiscanbecategorized basedonthenatureofthenumber(primeorcomposite)whosehighestpowerwearefindinginthefactorial,i.e (ii)Highestpowerofaprimenumberinafactorial: Tofindthehighestpowerofaprimenumber(x)inafactorial(N!),continuouslydivideNbyxandaddallthequotients. 1. Thehighestpowerof5in100! Solution: 100/5=20;20/5=4;Addingthequotients,its20+4=24.Sohighestpowerof5in100!=24 ALTERNATIVEMETHOD 2 2 100/5+100/5 =20+4=24(Wetakeupto5 asitisthehighestpowerof5whichislessthan100) (iii)Highestpowerofacompositenumberinfactorial Factorizethenumberintoprimes.Findthehighestpowerofalltheprimenumbersinthatfactorialusingthepreviousmethod. Taketheleastpower. 2. Tofindthehighestpowerof10in100! Solution:Factorize10=5*2. 1.Highestpowerof5in100!=24 2.Highestpowerof2in100!=97 Therefore,theanswerwillbe24,becausetogeta10,youneedapairof2and5,andonly24suchpairsareavailable.Sotakethe lesseri.e.24istheanswer. 3. Highestpowerof12in100! 2 2 Solution:12=2 *3.Findthehighestpowerof2 and3in100! Firstfindoutthehighestpowerof2. Listingoutthequotients:100/2=50;50/2=25;25/2=12;12/2=6;6/2=3;3/2=1 2 2 Highestpowerof2=50+25+12+6+3+1=97.Sohighestpowerof2 =48(outof972’sonly48canmake2 ) Nowforthehighestpowerof3.100/3=33;33/3=11;11/3=3;3/3=1; Highestpowerof3=48,Highestpowerof12=48 (iv)Numberofzeroesintheendofafactorialoraproduct Findingthenumberofzeroesformsthebaseconceptforanumberofapplicationquestions.Inbase10,numberofzerosinthe enddependsonthenumberof10s;i.e.effectively,onthenumberof5s F InbaseN,numberofzeroesintheendhighestpowerofNinthatproduct 4. Findthenumberofzeroesin13!Inbase10 Solution:Weneedtoeffectivelyfindthehighestpowerof10in13!=Highestpowerof5in13!Asthispowerwillbelesser. 13/5=2 5. Findthenumberofzeroesintheendof15!inbase12. 2 Solution:Highestpowerof12in15!=highestpowerof2 *3in15!=Highestpowerof3in15!=5 Visit: www.testcracker.in Contact: [email protected] Call: 9035001996 For Reviews or Testimonials visit us on www.facebook.com/testcracker CAT (V)Numberoffactorsofanyfactorial Thereisatechnique,whichcanbeusedtofindthenumberoffactorsinafactorial 6. Findthefactorsof12! 10 5 2 STEP1:Primefactorize12!i.e.findoutthehighestpowerofallprimefactorstill12(i.e.2,3,5,7,11).12!=2 x3 x5 x7x11 STEP2:Usetheformula m n N=a *b (a,baretheprimefactors).Thennumberoffactors=(m+1)(n+1) Thenumberoffactors=(10+1)(5+1)(2+1)(1+1)(1+1)=792.Answer=792 (VI)Rightmostnonzerointegerinafactorial 7. Whatisthelastnon–zerodigitof20! Solution:Usingabovepropertywecanwrite: 1x2x3x4x5x6x7x8x9x10=4x 11x12x13x14x15x16x17x18x19x20=4x Solastnon–zerodigitof20!= xlastnon–zerodigitof4!=lastnon–zerodigitof6x4=4 APPLICATIONQUESTIONBASEDONFACTORIAL 8. Howmanynaturalnumbersaretheresuchthattheirfactorialsareendingwith5zeroes? 10!is1x2x3x4x(5)x6x7x8x9x(2x5).Fromthiswecanseethathighestpowerof5till10!is2.Continuinglikethis,10!-14!,highest powerof5willbe2.Thenext5willbeobtainedat15=(5*3). Therefore,from15!To19!-Thehighestpowerof5willbe3. 20!-24!–HighestPower=4,In25,wearegettingoneextrafive,as25=5x5.Therefore,25!to29!,wewillgethighestpowerof 5as6.Theanswertothequestionistherefore,0.Therearenonaturalnumberswhosefactorialsendwith5zeroes. 7)USEOFGRAPHICALDIVISIONINGEOMETRY Let’slookatatechniquewhichwillhelpyousolveageometryquestioninnotime 1. ABCDisasquareandEandFarethemidpointsofABandBCrespectively.FindtheratioofArea(ABCD):Area(DEF)? Let’sdividethefigureusingdottedlinesasshowninFigureB.AreaofABCD=100%.AreaAEDG=50%.ThenAreainshadedregion 1(AED)=25%.Similarly,DCFH=50%.Areainshadedregion2(DCF)=25%.NowAreaofEOFB=25%..Areaofshadedregion3(BEF) =12.5%.Totalareaoutsidetriangle=62.5%.Areainsidetriangle=100-62.5=37.5%.Requiredratio=100/37.5=8:3 8)ASSUMPTIONmethod Thereareatleast10questionsoutof25inCAT2007whereyoucanapplythistechnique.Thisinvolvesassumingsimplevalues forthevariablesinthequestions,andsubstitutinginansweroptionsbasedonthosevalues.Assumptionhelpstotremendously speeduptheprocessofevaluatingtheanswerasshownbelow. 2 2 2 1. k&2k arethetworootsoftheequationx –px+q.Findq+4q +6pq= 2 3 3 (a)q (b)p (c)0(d)2p Solution:Assumeanequationwithroots1&2(k=1) 2 =>p(sumofroots)=3andq(productofroots)=2.Substituteinq+4q +6pq=54.Lookintheansweroptionsfor54on 3 3 substitutingvaluesofp=3andq=2.weget2p =54.=>Answer=2p . Visit: www.testcracker.in Contact: [email protected] Call: 9035001996 For Reviews or Testimonials visit us on www.facebook.com/testcracker CAT 3 3 2. Let‘x’bethearithmeticmeanandy,zbethetwogeometricmeansbetweenanytwopositivenumbers.Thevalueof(y +z )/ (xyz)is (a)2 (b)3 (c)1/2 (d)3/2 Solution:AssumeaGP1111thenx=1,y=1z=1.Answeronsubstitution=2,whichwillmakethecalculationevenfaster, halfoftheproblemsinAlgebracanbesolvedusingassumption.Thisisnotdirectsubstitution.Inthenexte.g.:seehowyoucan usethesametechniqueinanequationquestion. vSOMEACTUALQUESTIONSFROMCATSOLVEDUSINGTHISTECHNIQUE 1. ConsiderthesetS={2,3,4……2n+1),wherenisapositiveintegerlargerthan2007.DefineXastheaverageofoddintegersinS andYastheaverageoftheevenintegersinS.WhatisthevalueofX-Y? (a)1 (b)n/2 (c)(n+1)/2n (d)2008 (e)0 Solution:Thequestionisindependentofn,whichisshownbelow. Taken=2.ThenS={2,3,4,5).X=4andY=3.X-Y=1,Taken=3.thenS={2,3,4,5,6,7}.X=5andY=4.X-Y=1 Henceyoucandirectlymarktheansweroption(a).Youcansolvethequestioninlessthan60seconds. 2. LetSbethesetofallpairs(i,j)where1≤i<j≤nandn≥4.AnytwodistinctmembersofSarecalledfriends,iftheyhaveone constituentofthepairsincommonand“enemies”otherwise.Forexample,ifn=4,thenS={(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)}. Here(1,2),(1,3)arefriendsbut(1,4),(2,3)areenemies.Forgeneraln,consideranytwomembersofSthatarefriends.How manyothermembersofSwillbecommonfriendsofthesemembers? 2 2 (a)2n-6 (b)n/2(n-3) (c)n-2 (d)(n -7n+16)/2 e)(n -5n+8)/2 Solution:Wewillstartwithn=5,thenyouwillgettwooptions(c)and(d). Nowtaken=6,letstaketwomembers(1,2)and(1,3).Thentheircommonfriendswillbe(1,4),(1,5),(1,6)and(2,3).i.eFour commonfriends.Sosubstituten=6amongansweroptionsandcheckwhereyougetanswer4.Onlyoption(c). There were more questions which could be solved using similar strategies. The methods given above clearly show that for someonewithgoodconceptualknowledgeandrightstrategiesthequantsectionisacakewalk. …………………………………………………………………………………………………………………………………………………..................................... AboutthetrainersofTestCracker F AshankisunarguablyIndia'sbestQuanttrainerand100%ilerofCAT–15(Qunat).HehastrainednumerousCAT topperseversincetheCATwentonline,including99.9%tilersofCAT2015–Shrikanth,Rushil,Sandeep,Abhilasha, Prakhar,Pratik,Shivanitonameafew. F Yashaswi,analumnusofIITKharagpur&XLRIJamshedpur,hassuccessfullytrainedhundredsofIIMhopefulsinthe last7years.AspirantstrainedbyhimarecurrentstudentsandalumniofIIMs,XLRI&otherleadingB-schools.Brute ForceMethodologyishistrademarkedapproachtotacklecompetitiveexamssuccessfullywithintheshortesttime span.HehascrackedCATmultipletimes.Hehasscored99.7%ileinCAT2014and99.98%ileinXAT2015. Visit: www.testcracker.in Contact: [email protected] Call: 9035001996 For Reviews or Testimonials visit us on www.facebook.com/testcracker CAT Testimonials Ravi Shankar (IIM A) “WELL!!! They say hard work never goes in vain and "Dene wala jab bhi deta , deta chappar phaar ke.." I will take this opportunity to present a huge token of appreciation to the TestCracker Team due to which I could crack IIM Ahemdadabd, IIM Bangalore, IIM Calcutta, ISB Hyderabad and XLRI BM.. I guess the results themselves speak of the caliber of the faculty members of TestCracker and their unparalleled devotion to the students.. Was really lucky to be guided by such a marvelous team... Keep up the good work TestCracker and you guys are surely on the way to become the numero uno test prep institute in India!!!!!!!!!!!!!” Vivek Murthy (IIM A): I would like to take this opportunity to thank everybody at TestCracker Team, without whose support I wouldn't have been able to convert my IIM A Call. My heartfelt gratitude to the highly dedicated faculty of TC, Ashank Sir, Yashaswi Sir...who motivated me, guided me and helped me crack the best interview call I had! Sonali Gupta (IIM B): This is where you should be in order to realize your dream. The quality of education, the intensity of personalattentionandvalueforyourmoneyisunmatched.ItwasallbecauseofTestCrackerandtheteamthatIhavefinally achievedwhatIalwayswantedto.Thankyouforeverything. DeeptiKini(IIMC):Igottosayonlyonething-theyareawesome.Ihaveseenmyselftransformfromgivingcrappyinterviewsto convertingoneofthebestcallsthatIhad-allthankstoYashaswisir.Onceyoujoin,youareassuredpersonalizedtraining.They areavailablewheneveryouneedthemandyoucanbugthemasmuchasyouwant,theyarealwayshappytohelp! AlanIdicular(IIMC):Nevergotachancetosayit,sohereIformallydothis.....ThanksalotAshanksirndYashsir....Ioweittou bigtime....convertedeverycallthatIhad...Thanksagain... ShriKanthJuneja(IIMC):TodayismyfirstdayofmyMBAprogrammeatIIMC.Ican'tthankAshankandYashashwienoughfor helpingmethroughthisjourney.AshanksimplifiedQuant,DataInterpretationandLogicalReasoningconceptshelpingmebreak down tough problems at a speed I didn't think was possible before. Yashashwi's Group Discussion and Personal Interview sessionsareoneofthebestknowledge-enhancing,confidence-boostingsessionsonecanattend. ShivaniYadav(IIMC):ImadeittomydreamcollegeIIMC,andIoweTestcrackerandAshankSir..bigtimeforallthehelpand supporttheyprovided.ConvertingeachandeverycallIhad,would'nthavebeenpossiblewithouttheirexcellentmaterialand support. Srinivas Guptha Kapaganti (IIM – L): “I have seen many ads of coaching institutes quoting "personal attention and feedback" but never experienced it...In test cracker I have met a person called yashaswi whose guidance is no less than that of an elder brother... constantly building up ur strengths...suggesting ways to cover up ur weaknesses...making u up to date with whats happening...inculcating "can do" attitude in u right from day one...and the list goes on. I have taken GD-PI course in testcracker and coneverted almost all my calls that I got and am joining IIMLucknow.Just dont go by the looks of the institute..talk to yashaswi once and I bet you cannot think of going anywhere else for preparation....Thanks yashaswi and testcracker” Archit Aroara (XLRI Jamshedpur): “Kudos to Ashank sir for the indispensable quant lessons and Yash sir for extensive support during the interviews and changing my.approach towards MBA entrance exams. In the past, a distorted self-image prevented me from identifying areas that warranted improvement—a major stumbling block in cracking these exams. Test Cracker quickly uncovered the problem and provided me extensive study material along with emphasis on solving myriad of problems in the classroom itself which helped me in tracking the preparation. I hope these lessons will serve me as I begin to climb the leadership ladder. Keep up the good job!! Test Cracker is right on track to become the #1 coaching choice in Bengaluru” Visit: www.testcracker.in Contact: [email protected] Call: 9035001996 For Reviews or Testimonials visit us on www.facebook.com/testcracker
© Copyright 2026 Paperzz