Math 102, PALS Spring 2016 Sample Test 4; Smith-Subbarao 1. Complete the following table; function f(x) Domain arcsin(x) [-1, 1] arcos(x) [-1, 1] arctan(x) , Range f(-1) [/2, /2] -/2 [0, ] -/4 [-/2, /2] f(0) 0 /2 1 0 Evaluate the following: 2. cos−1 (cos 2𝜋)= cos-1(0) = 0 4 3. tan (cos−1 (− 5)) If cos = -4/5, sin = 3/5, tan = -3/4 𝜋 4. tan−1 (2 sin 3 ) sin(/3) = √3 /2, tan-1(2√3 /2) = tan-1(√3 ) = /3 5. Evaluate each expression without using a calculator and write your answer using radians. 3 a. sin 1 = -/3 2 2 b. cos 1 = 3/4 2 1 c. tan 1 = -/6 3 6. Evaluate by drawing a right triangle and labeling its sides. x sin tan 1 sides are x, √𝑥 2 + 22 , and√2𝑥 2 + 4; sin = x/√2𝑥 2 + 4 2 x 4 Solve (a) for the principal root, (b) for all solutions in the interval [0,2π), and (c) all real roots. 7. 8sin x 4 2 sinx = −√2 /2; reference angle is -/4; a) principle root is -/4, b) 5/4, 7/4, c) 5/4 + 2n, 7/4 + 2n 8. 3 sec 3x 2 cos (3x) = - √3 /2 so 3x = 5/6 + 2n, 7/6 + 2n; all roots: x = 5/18 + 2n/3, 7/18 + 2n/3; principle roots 5/18, 7/18,, in [0, 2): 5/18, 7/18, 11/18, 17/18, 19/18, 23/18. 25/18, 29/18, 31/18 Solve in [0,2π): 9. 4sin 3 x 4sin 2 x sin x 1 0 , 4 sin2x(sin x – 1) – (sin x – 1) = 0 or (4 sin2x-1)(sin x – 1); sin x = 1/2, sinx = 1, x = /6 + n, 5/6 + n or x = /2 + 2n. In interval, have /6 5/6, 7/6, 11/6, /2 10. tan2 𝑥 + tan 𝑥 = 0 , tanx (tanx + 1 ) = 0, tanx = 0 or tanx = -1, x = n or x = 3/4 + n; in interval, x = 0, , 3/4, 7/4 11. 1+cos 2𝑥 2 3 1+cos 2𝑥 = 4 Take square root of both sides: √ 2 1+cos 2𝑥 = √3/2, but √ 2 = cos x. So cos x = √3/2; x = /6, 5/6, 7/6, 11/6 + 2n; Principle: /6, 5/6; in interval: /6, 5/6, 7/6, 11/6. Alternatively, cos 2x /2= ¾-1/2 = ¼ or cos 2x = ½; so 2x = /3 or 5/3 + 2n , x = /6 or 5/6+ n= /6, 5/6, 7/6, 11/6 12. cos2 𝑥 − sin2 𝑥 = 0; cos 2x = 0, 2x = (2n+1)/2, x = (2n+1) /4 13. −2 sin 2𝑥 = √3 ; sin 2x = -√3/2, 2x = 4/3, 5/3 + 2n, x = 2/3, 5/6, 5/3, 11/6 14. sec2 𝑥 = 2 tan 𝑥; 1/cos2x = 2sinx/cosx; 1 = 2sinx cosx, 1 = sin2x, 2x = /2 , 3/2 + 2n; x = /4, 3/4, 5/4, 7/4 15. Find two triangles for which A 34o , b 2.3 mm , and a 1.9 mm . Round all answers to two decimal places. sin A /a = 0.29 = sin B/b, so sin B = 0.68, B = 42.60 or 137.30. Since angles sum to 180, C = 103.4 or 8.7. For the first, c = (a/sin A)sin C = 3.35, and the second 0.52. TRIANGLE 1: B = 42.6, C = 103.4, c = 3.35mm TRIANGLE 2: B = 137.30, C = 8.7, c = 0.52mm 16. Find all the missing parts of the triangle if a 12, b 8, and c 5 . Round all answers to two decimal places. a2 = b2 + c2 – 2bc cos A; cos A = [b2 + c2 –a2 ]/2bc, A=133.47. sinA/a = sinB/b, B= 28.96, A + B + C = 180. C = 17.57; Check sinA/a=sinB/b=sinC/c = 0.060 17. Convert the given polar equation to rectangular form. 2 cos 𝜃 − 3 sin 𝜃 = 𝑟 multiply both sides by r: 2rcos - 3rsin = r2; 2x – 3y = x2+y2 18. Convert the given rectangular equation to polar form. 𝑥 2 + 4𝑥 + 𝑦 2 + 4𝑦 = 0 ; x2 + y2 + 4(x+y) = 0; let x = r cos , etc.; r2 + 4r(cos + sin ) = 0, 19. Graph the given parametric equations for the indicated values of t. Be sure to indicate the direction of the graph. Then write the equation in terms of 𝑥 and 𝑦 by eliminating the parameter. eliminate t: (x +3)/2 = t, put in 2nd equation: y = (x+3)2/2 – 4 or y = x2 /2 + 3x + 9/2 – 4 = x2 /2 + 3x +1/2 This is a parabola. -4 𝑥 = 2𝑡 − 3 𝑦 = 𝑡2 − 4 𝑡≥0 -3 -2 5 4 3 2 1 0 -1 -1 0 -2 -3 -4 -5 1 2 20. Convert from rectangular to polar coordinates: (4, -4), ( – 4 3 , 4) (4, 7/4), (8, 5/6); note that the 1st is in Q4 and the 2nd in Q2 ) 6 For the 1st, the negative sign makes it point in the opposite direction 21. Convert from polar to rectangular coordinates: (-4, π), (4, (4, 0), (2√3 , 2)
© Copyright 2026 Paperzz