Celebrating International Pi Day 2014 Worksheet for secondary students Originating in the US, International Pi Day started out as a celebration of one of the most recognisable mathematical symbols but has grown the world over as a day to embrace, share and enjoy mathematics. International Pi Day is celebrated on March 14th (3/14) and Pi (Greek letter “π”) is the symbol used in mathematics to represent a constant — the ratio of the circumference of a circle to its diameter — which is approximately 3.14159. Pi is a constant number, meaning that for all circles of any size, Pi will be the same. The number Pi is extremely useful when solving problems involving circles, but also appears in many other applications of mathematics. radius diameter The Australian Mathematics Trust wishes every student a happy International Pi Day. Please enjoy these activities in your classroom and celebrate the fun of mathematics with the world. area circumference About Pi Pi is an infinite non-recurring decimal which means Pi has infinitely many numbers to the right of the decimal point and no repeating pattern. As a number that cannot be written as a repeating decimal or a finite decimal (you can never get to the end of it) pi is irrational. Pi shows up in some unexpected places including the 'famous five' equation connecting the five most important numbers in mathematics, 0, 1, e, π, and i, known in mathematics, as Euler's identity eiπ + 1 = 0. History of Pi By measuring circular objects, it has been known for a long time that the circumference of a circle is a little more than 3 times its diameter. The mathematician Archimedes used polygons with many sides to approximate circles and determined that Pi was approximately 22/7. In Australia, Pi Approximation Day is celebrated due to our date format of day/month. The symbol (Greek letter “π”) was first used in 1706 by William Jones. A ‘p’ was chosen for ‘perimeter’ of circles, and the use of π became popular after it was adopted by the Swiss mathematician Leonhard Euler in 1737. Remembering Most of the time, Pi is recognised as 3.14 but for additional accuracy 3.14159 is used. A good way to remember this longer number is to count the number of letters in each word of this phrase. May I have a large container of butter today 31415 9 2 6 5 For more information on International Pi Day visit www.piday.org ©2014 Australian Mathematics Trust www.amt.edu.au 1 About the Australian Mathematics Trust The Australian Mathematics Trust is a national non-profit organisation whose purpose is to enrich the teaching and learning of mathematics and informatics for all students. The vision of the AMT is to challenge and encourage Australians in the understanding of mathematics and informatics through competitions and original enrichment programs. The best known activity of the Trust is the Australian Mathematics Competition (AMC) sponsored by the Commonwealth Bank which is the original mathematics competition in Australia. The AMC began in 1978 and attracts hundreds of thousands of entries annually from Australia and overseas. Many of Australia’s leading mathematicians aged below 40 were identified and developed as a result of taking part in the competition. Entries are now open for the 2014 Australian Mathematics Competition held on Thursday 7 August. For more information about the AMT visit www.amt.edu.au ©2014 Australian Mathematics Trust www.amt.edu.au 2 38 1993 S.29 (6%) 38 1993 ◦ ◦ Two of the angles of a triangle are 15◦ and 60◦ . It is inscribed in a circle Two of the angles of a triangle are 15 and 60 . It is inscribed i of radius 6. What is the area of this triangle? of radius 6.√What is the area of this triangle? √ √ √ √ √ √ √ 27 3 16 2 20 2 √ 7 3 27 3 16 2 20 2 (A) 9 3 (B) (C) (D) (E)3 (A) 9 (B) (C) (D) 4 3 3 2 4 3 3 CIRCLES 38 CIRCLES IRCLES C Pi Problems Two of the angles of a triangle are 15 1 1993 S.29 (6%) C IRCLES and 60 . It is inscribed in1979 a circle J.11 .................................................................................. of radius 6. What is the area of this triangle? .... . . .... .... . .. . . . ... . . . . 1 1979 J.11 . 1Two circles of equal √ ... ... . . size are just contained in a .......√ √ . . . . . . . . . . . . . . . . . . . . . . . . . . ........ . ....... . ......... .....√ ... ............... ..... . ..... . ..... ......... .... ... ... .. .I.11 .. √ ............ 2 1 1998 (33%) . . ..3 27 3 16 2 20 7 . . . .......... 1 1998 ....... ....... Two circles of equal size are just contained in a rectangle as shown. If the radius of each circle is . . . . .. (A) 9 3 (B) (C) (D) ........... ..... ... ... ...................(E) .. ... ... ... ........ ... ... ............ ..... ... ... ... ..... ... 2......... .. ... ... ........ ...3 4 theinradius 3 . .. .. ............ .. rectangle as shown. If of each circle is 1cm then the shaded area, square centimetres, ...................... ....................................... ......................... . ....... . A tile is designed by removing quarter circles from a ...... ............A ...... tile .... ......... .......... is designed by removing quarter circles from a .... ........ .. .......................... ............ . ......... .. . . . . . . . . . . . . . . 1cm then the shaded area, in square centimetres, is . . . . . . . . . . . . . . . . . . . . . . . . ....... . . . . ........ (E) ......... 2π ............ (A) π −of4 side 12(B) − 2π where(C) − π of the (D) .4. − .................... . .4.. ..........square square as 8shown, the8 radius .... of side.. 12 as shown, where the radius of the .. .. CIRCLES .. 12 .... (A) π − circle 4 8 − 2πof the side (C) of 8− π square.(D) 4 12 − 2π (E) 4.....is one-third of the side of the square. quarter is (B) one-third the ..quarter circle .. .............. . . . . . . . . . .............. .... .. ...... .. .... .... .. .... S.8.. 1981 2 .... .. ... ... .. ... Three of the tiles are placed in a row as shown below. . . . ..Three .. . tiles are placed in a row as shown below. .. .. . . ... of the .. . . .. .. ... ... ... ... ........... ...1981 2 . .... ... .... ... ...S.8 ... ... .. P The circle is inscribed inside the triangle ... ... ... ... ... ... 1 1998 I.11 (33%) 2 ... ... = 4cm, . T P ... = . P The circle inside the triangle . . P QR. SRis =inscribed 7cm,..... QS ..... ... ... ... ....... ... ... ... ........ ... ... ... .... ... ... ... .. .. .. ... ... ... ... ... . . ... .. .. .. .. .. .. .. .. .. .. .. .. .. .. ... ... ... ... ... ... .. ... ... ... ...... ......... ... PP ... ... .= .... .... .. removing P QR. = 7cm, QS 4cm, = 4cm. perimeter the QR, .. .....triangle ... ... A tileThe isSR designed by quarter circles from a ... ... ... .... .... T .... .... . . . ... of . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...... . . . . . ........................ ..... ..... ....................... ...... . .. .. .. ................ ................ ........... . . . . . . ............ . . . . . . . ............ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ............ ........... ...... ...... .. . ........ ... . . . 4cm. The perimeter of the triangle P QR, in centimetres, is . . square of side 12 as shown, where the radius of the.... ................................ ..... . . ....... ... T ................ 12 .... . . .. in .. quarter the side of the square...... ...... .............. ........ .............. . ....one-third ...(B) (A)centimetres, 30 circle isis 50 .of ....... . ........................... (C) 15π ........................... .......... .. .............. T........ ....... .... ........... ...... ...... .... .... ............... ................. .............................. ......... ............. ... .... ..... .. ..... ..... ... .... ... ... ... .... .... ..... . . . . . ... ... . . . . . .. . . . . . .... . ... .. ...... .shown below. ... ... .. .. ... ... . ..... .. .. .. 50 (A) 30of the (B) (C) 15π . . Three tiles are placed in a row as .. . . . .. . . ... . . ... ... . .. . . .. .. ... .. ... ... . (D) 11π .... (E) 60 ..... ...... . . . . . . . . . .... .... . . . . . . . . ... .. ... . .... .... .... .. ... ....... . . . ... .. . ... .... ... ... ... ... .. ...... ........... ..... ......................................... (D) 11π (E) 60 . ......... ... ......................... ..... . . . . . . . . ........ .. ... . .. ... ..... .. .. ......... S ... Q........ .. ... ... .................................... What is the perimeter of.......the shape formed? .. R perimeter of the shape formed? .. What is the .. ... .... ... .. .... .... ... . . . . . . . . . . . . . . . . . ........ S ......... ........ . .. ... R32 ........ .................Q .................... ............. (A) 24π + 48 (B) 24π + 32 (C)24π 48π (A) ++48 (B) 24π + 32 (C) 1983 S.8 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ......... ......... ....... ...... 1983 S.8 ....... 68 (D) 12π + 32 (E) 48π + . . . . 3 . . . . . . . . . . . . . . . . . . . . (D) 12π + 32 (E) 48π + 68 . . . . . . . . . . . . . ......... in a circle ..... .. ... .... .......... .. ...... Chords are drawn The ... .... .... ........ as......shown. ....... ..... .... ..................................................... ... ... .... .... .... ... ....... ...... ......... ... . ... ... ...... .. ..... .............. . .. .. .. .. .. ..... .. ..... ..... Chords as shown. value of are x isdrawn in....... a circle ..... ..... ... ......... ..... ... ... The ... ... ... ...... .. . . . . ◦...................(37%) .. .. ............. y ◦ 2 1997 I.13 . x . . ... .... 1997 2 . . . value .... ...... ... ........................I.13 6 (A) (B) 48 (C) 52 ........................... .................◦..................................2000 36 44of x is ..... ....(22%) . . ... .. . . ..................................... . ◦ . . . . . . .............. (22%) 2000 I.13 ... . ... x ............. ...... .y . ...... .... . . . . . . . . . . . . . . . . . . . . . . . . . ... .... A go-kart track is (B) made up of one large ...... ◦A.......go-kart ... ... ... . ..... ........ .........track is made up of one large ....... .......... . (A)50 44 48 What the of the shape ...... ...........z ..........it ..(the ..... ... .... .. .... ...around A misby 20perimeter m84swimming pool a(C) 2 m52 wide.............path outer (D) (E) 40has formed? ...... ..... ........... .... .... .... . . . . . ◦ . . . . . . . . . . ..... ...... ........◦ A 50 m by 20 m swimming poolsemicircles has a 2 m wide........path around it.. (the outer semicircle, and three smaller .....96 ... ..........z ..semicircle, .....and three smaller semicircles ...... .... ......... .. ............ pool). (D) 84 is always (E)240 .... border of+the m from the32nearest part......of The ...... ..32 (A) 48 path 24π + . . ...... ........the ..... (C) ......◦ 48π + ... .. ... .... ............ 96 ...... .... ...... border the path is always 2(B) m from the part pool). each24π of of radius 100 m, as shown. What is nearest .. . . ..The ....the .... of . . . . . . . each of radius 100 m, as shown. What is . . . . . . . ... .... ..... . . . . . .... .. ...... . ... .. ... .. ... ... area of the path,(D) in square metres, is ...... ◦ ..... .. ...... ............................... .. ..... 68 ...... ..... .... ... .... ......+ .. 12π + 32 (E)....... 48π ...... ...... ............................ area of the path, in in metres, square metres, is .. . 44 the total length, of the track? .. ... ....... .. ..... .... ...... the..............total in metres, of the track? .... .. ...... ............ .....length, . ... ...... .......... .... ... .. ... . . . . . . . . . ... . . . . . . . ... . . . .....140 .. . (A) 280 + 4π (B) 280 + 2π ..... .........................44 (C) ............. .... + 2π.... . ........... ◦ . . . . . ... . ....... + 2π.. ....... 140 ............. . . . . . . . . (A) 280 (B)(C) 280 + 2π .... (C) . 150π+ 4π (B) 200π 300π ..... . . . . . . ... ..... ... . .......... . ................(A) . .... 150π (B) 200π (C) 300π ...... . . . . . . . . . ....... ... ....... .. .. . .. . . 1997 I.13 (37%) 2 . . . . . . . . . . . .......... .. (D) 140 + 4π (E) ... 70 + 2π . ..... .... . . . . . . . . . . . . . . . . . . . . . . . . . . . ....................................... .... . ... . . + 4π (E)..........70 + ...2π . . . (D) 450π(D) 140(E) 600π . . . . . . . . . . . . . . . . . . . . . . . . . . . ......... ....... (D) ..... (E) 600π .. ... 450π . . .................................... . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..... ................... ... A ..... ..... 4 go-kart track is made up of one large 1981 .I.10, S.4 .... ..... .... .... .(5%) .... ............ 7 I.19 ..........................................2000 ... semicircle, and three smaller semicircles . . . . . . . . . . . . . ...S.4 .... 1981 I.10,(5%) 474P Q is the diameter of a circle with centre ....... ................... ......R..........................................2000 ... ................ .........I.19 ... ... .. .. ...... ..........................Q .. each of radius 100 m, as shown. What is .. .... .................................................... ... ... ... ............ ........................................................................................................... ..... . . . .. ... P Q is the diameter of a circle with centre ........................................................................... Q O. R is a point on the circumference so ............R .. ....... . .. . . . . . . . . . . . . . .. . ....................... .... thesquare total length, of theintrack? A of side ina metres, is inscribed a cir................................................................................. .... ..... ...... .. . .................................................................... ..... .... . . .. . . . . . . . . A side=aon is the inscribed a cir- so . .. . . . . . . ...................... ... ... O. square R is = aof OQ point circumference that PO QR = 1. Theinlength of .... .... ...... .. . ..................................................................... . . . . . . . . . ................... ... ... . . . . . . . . . . . . cle and semicircles are constructed on its . . . . . . . . . . .... . . . . . . . . . . . . . (A) 150π (B) 200π (C) 300π ... ................................. .. . .. ................................ . . . . . . . . . . . . . . . . . . . . . . . cle on its of ... ....... .............................................. ... .. .. ............................. ... that = OQ = are QR constructed = 1. The length P Rand isP Osemicircles . . . . . . . . . . . . . . . . .. ......................... .. ... ..... ...................... .. .. sides√as shown. The total area of the four . . . . . . . • . . . . . . . . . . . . ..... (D) 450π (E) 600π sides The total area of the four 3 ................................................................................................... O ...............................................................................73 P R isas shown. ............... Questions circles ....... ........... .....geometry Questions — circles (A) 5showngeometry lunes, shaded,(B) in 1— square units, (C) is 3 ................................................... ............ ... • ........................... √ . . . lunes, shown shaded, in square units, is 2 ............................... ... ... . ................ O . . . . . . . .................... .................... .. . (A) 52 (B) 1 (C) . . . . . . . . . . . . . . . . . . . . . √ .... π .. ...... . . ... .. .. πa2 πa22 a22 2 ..................................................... . ... .................. ........... ... .......................... .................................... (A) πa (D) √3(B) πa (E) π (C) a .... ................. .............................. ..... .................................. . . . 2 . . . . . (A) 4 . (B) (C) . . ...................................... .. . .. . ... .. 2 (E) 8 P ......... . ...... .. ........ ............................................. (D) 3 .................................................................................. 4 2 8 ......... .......... ................................ 22 ............................ ............. ............ P a .......................................... . . . . . . . . . . 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .................................................................................. .............................................................. (D) a22 (E) a ............................................... (D) a (E) 2 ............... ..................... ..... ......................................................... ....... . . .......................... 2 ...................................... ..... Questions geometry — circles 73 Questions geometry — circles 69 8 2000 I.28 (9%), S.27 (9%) Questions geometry — circles 69 8 2000 I.28 (9%), S.27 (9%) 5 ◦ Each of the four chords in the diagram Each of the four chords in the diagram cuts the area of the outer circle in the cuts the area of the outer circle in the ratio 1 : 3. The points of intersection of ratio 1 : 3. The points of intersection of these chords are the vertices of a square. these chords are the vertices of a square. The chords cut the circle into 9 regions. The chords cut the circle into 9 regions. The ratio of the area of region P to the The ratio of the area of region P to the area of the circle passing through the area of the circle passing through the vertices of the square is vertices of the square is (A) 1 : 4 (A) 1 : 4 √ (B) 1 : √2 (B) 1 : 2 (C) 1 : 2 (C) 1 : 2 ©2014 Australian Mathematics Trust www.amt.edu.au ◦ ........................................... .......... . ....... .............................................................. .... ......... ........ ...... .............. ................... . . . . .................... .... ......... . . ........................... . . . . . . . ....... . . . . . . . . .............. ...... .. .. .... .... .... .... .. .......................................... . . . .... . ...................... ... .... .... ........ ... .... . . . . ........ . ... ...... . .... ...... .. ..... .... ...... ... ... .. ....... ..... ..... .... .. . .... ... . . . . ... .... .... . ...... . .... . ..... ..... ...... .... . ... ..... ...... .. .... ..... ..... ..... ... ... ..... .... ..... .. .. ... .... .. .. .... .... ... ...... . . . . . ...... . . . . . . . . . .. ... .. . ....... . .... .... .... . ... ... ......... .... ... .... ...... .... .. .... ...... .............. . . ..... ........ . . . . . . ... . ...... .............. ........ ............... ...... ........ .............. ........ ................... .................. P P (D) 1 : π (D) 1 : π (E) 1 : 2π (E) 1 : 2π 3 Solutions and Teachers Notes Alternative 2 Q,Competitions. S These questionsofhave previous AustralianTMathematics The first should be The position S iscome not from specified in the 4 . . ...... ... ..... . . .. . . . question so may be assumed to learnt coin- the area .....formula for ....a circle. The next two are a little more . . quite easy and for most students who have . . .... . .... ...... ... ..... cide with Q.but Thus the area of �RQT equals .. ... .. ...... challenging require no algebra. The last two are difficult, requiring some spatial insight into how . . . . ...quite .. 1 1 ..... .. 6 2 ..... ... ..... .. T Q × QP = × 4 × 6 = 12cm , . .. . . . . . .. is not complicated, but careful thought is required to shapes can be added or subtracted. The algebra involved ...... ... 2 2 .. .... .......... ... .. ... (A) ... ....... ........ establish the combination of areashence required. ...... . ... R P CIRCLES 11 It is clear that the width of the rectangle is twice the radius of the circle, or 2cm, and the length is four times the radius, or 4cm. The shaded 4 2000 J.16 (60%) area is the area of the rectangle minus 2 times the area of the circle, i.e. Alternative (4 × 2 − 2 ×1π × 12 )cm2 = (8 − 2π)cm2 , x x x ... ..... ... .... ...... .... ....... .... The figure is a parallelogram hence (B) .... .. .. ...... .... .... . . .. .... ... with base 2x and height 12. .. .. .... .... . . .... . . . .... .... ... .. 12 .. .... .... Its .. .... ... .... 2 area is then 2x × 12 = 24x. ... .... .. ... .... .... ...... . . . . . . ... .... .. So 24x = 408 and x = 17, .. .. P After making the constructions shown ... ... hence (D). ... and denoting the circle radius as r we .. . C IRCLES 4 ...... Alternative 2 QOS, QOT are congruhave that �s . ............... . .......... .... ........ .. ...... ... x,......with ..... V The (RHS), figure consists of two 12 and.........base area ent therefore QT triangles, = QS = height 4. . ....... . ..1998 T ............. ....... ...... .. 1 I.11 (33%) 2Similarly, ... 1 ... . . . . . P V = P T = 4 and V R = O . .. .... So .. = 408 and 2 × × x × 12 = 12x, and a rectangle with area.... 12x. .. ................. 24x . . . . . . . . . . . . . 2radius The= of the circular arcs is 4is units ...... .. .....of ........ the .. straight SR 7. Therefore the perimeter 30, and the ...... .. ....... .... ......... length ...... ........ x = 17, ....... ...... edges is 4 units. ....... hence (A) .................................... r .... .............hence ....... ....... ....... (D). . ....... .... ....... ....................................... There are 8 straight edges and 3 full circular........arcs, so 4 7 Q S R the perimeter = (8 × 4) + (3 × π × 8) = 24π + 32, 2000 I.8 (37%) 5 hence (B). 3 The shaded area is the difference between two right-angled .................triangles ............. .............. . . ........ . . . . . ...... ..... ...... ..... (37%) Let and about z be the as shown the24 and .....5.............and with theangles right angle of 10inand 12 1997 respectively. 2 ysides I.13 .... ... . .. ... . ◦ . 1 ... diagram. Since y is subtended from the ...... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ............. ....... units, . . . . ....... . . The shaded area is then (10 × 24 − ◦5 × 12) = ..90 . . . . . . . ... .......... square . ...◦ ............... ..... ...........y .......◦ . . . x ...... ... ...... .... 2subtends 44 . The track one semi-circle of rasame chordconsists as thatofwhich ,y= . . . . . .... . . .... .. .. ........ .... . .... .. ..... ..... .... .. ..... hence (E). ...... ..... ..... ...... ...... dius 300, andz three radius 44. Clearly, = 180semi-circles − 96 = 84.ofThus x = .................. .. ..... z ◦ .......... ...... ..... .... ... ... ............ .. .. .... . ◦ .. .... .......... 96 . ... 100. 180 − 44 − 84 = 52, . . . . . . . . .......................... .. . . . .. .... . . . . . ........... I.13 (22%) .. ... ... 3 total length of the track is hence (C) ..... ...... 6 2000 .. ......... .. ..... .... .. The ...... ..... .. .. ... ... ...... ..... ..... .. . . . . . . . ..... . . . . ... .. ........ .... .... ..◦ ... .......... . ... . .. ............ .. . .. ....... 44 300π + 3 × 100π = 600π, . . ... . ... . . . . ..... .. .... . ....... .......... .. .. ...... The path has the shape of a rectangle with quarter ... . . . . . . . ........ ... .. ...... ..... .. . ... . . . . . ........... .. .. .. .... .. .. ... ........ . hence (E). . ... . . . . . . . . . . . . . . ..................................... ..... .... circles, as shown in the diagram. .... .... ........ ..................... ........ ..................... The area of the path is then 20 3 1997 I.22 (21%), 50 S.19 (26%) (2 × 50 × 2) + (2 × 20 × 2) + (π × 22 ) .... .. .. ... ... .. .... ... .. ... .... . ...... .............R ....................... ........... ...... . . . . . = 280 in + 4π . . Draw the construction lines as shown, where . . . . . . . . ........ ..... . . . . . . . . . ... ... Solutions geometry — circles 205 ... . . ... L is the centre of the circular arc and LR is the M 30 ....... N (A). ... ... hence ... ... . . ... vertical radius. x ....... ... ... ... ... ... ... Then LR = LN = 50. 60 cm ... ..... 50 ... .. ...... Let LM = x. L In the right angled ΔLM N 60 cm LN 2 ©2014 Australian Mathematics Trust = LM 2 + M N 2 502 = x2 + 302 x2 = 402 x = 40 www.amt.edu.au M R is then 10 cm, so the maximum height is 60 + 10 = 70 cm, hence (A). Solutions geometry — area 213 4 477 2000 I.19 (5%) 2000 I.19 (5%) Alternative 11 Alternative The area area of of the the four four lunes lunes is is the the area area The of four semi-circles, diameter a, less that of four semi-circles, diameter a, less that portion of of the the area area of of the the larger larger circle circle portion which is outside the square. which is outside the square. The area area of of the the four four semi-circles semi-circles is is The 2 πa22 11 × π × aa2 = πa 4 × 4 × 2 × π × 4 = 2 .. 2 4 2 By Pythagoras, Pythagoras, the the diameter diameter of of the the larger larger By 2 √ πa 2 √ circle is is aa 22 and and its its area area is is πa .. circle 22 .......................... ........ .................... .......................................................... ............................................................ .................................................................................................... . ............................................................................... .................................. .............................. .............................................................................................. ........ .......... ...................... . . . . . . . . . ........... ............ . . . . . . ........................ ......... . ..... ... ....................... ....... .................... ........................ ................................. ............................. ....................................... . ............................ ........................... . ......................... . . ..... . ............................ ........................................... ......................... ................................. ............................ ......................................... ......................... ............................... ............................. ........................... ................................. ............................................. . . . . . . . . . . .. ......................... ...................................... ......................... . ................... ......................... ......................................... .................... ... . . . ..... ...................... ......... . .. ..... .......................... ................ ..... .......... .............. ....... .......... ......................... ............... ...................................................................... ................................................................................. .. ........................................................................ .................................................... ... ...................................................................... ........................................................... ....................................... ................................ πa22 πa22 2 2 πa + a The required area is then 2 − πa = a2 , The required area is then 2 + a − 2 = a , 2 2 hence (D). (D). hence Alternative 2 Alternative 2 The total total area area is is the the central central square square (a (a22)) plus plus four four semicircles semicircles The 1 a 2 1 1 2 2 (4 × ) = πa ), that is a (1 + π). 12 π( a 1 1 2 2 2 2 π). (4 × 2 π( 22 ) = 22 πa ), that is a√(1+ a√ 2 22 2 1 2 = It is also the inner circle (π a 22 1 πa2 ) plus four lunes, so the area It is also the inner circle 2 (π 1 2 1 = 222πa ) 2plus four lunes, so the area (1 + + 12 π) π) − − 12 πa πa2 = = aa2 ,, of the the four four lunes lunes is is aa2 (1 of 2 2 hence (D). (D). hence 8 2000 I.28 (9%), S.27 (9%) 5 8 2000 I.28 (9%), S.27 (9%) Let the the areas areas of of the the regions regions be be P P ,, Q Q and and S S as as shown shown and and the the area area of of the the Let larger circle be A. Since each chord divides the area of the circle in the larger circle be A. Since each chord divides the area of the circle in the ratio 11 :: 3, 3, we we get get ratio 1 ............................................ ....... ......... 4P + 2Q = A (1) ....... ..... .... ..... 2 .... ..... . . . .... . Q ... ... . ... 1 .... .... .... . .. P . . . . . ... . P . ... .. . . . . ... 2Q + S = A (2) .. . ... ... ... . .. .. . .. ... 2 . ... . . ... . .. r . . . ... .. ... . ... . ... .. . (1)−(2) 4P − S = 0 ... . . ... ... .. .... x .. ... . Q S Q . . .... .. ... .. . . . . . 1 .. ... . ... . . . . r ..... ... ... .. thus P = S ... .. .. .... ... ... .. .. .... 4 .. ... .... .... .... .... ... .. ... . . .... 1 2 P........... ....P .... Q ..... .. = x , ........ ...... . . . . . . . . . . ............ 4 .................................. 214 x is the side of the square S. geometry — — area area Solutions Solutions where 214 geometry Now, if r is the radius of the smaller (dashed) circle, then 2r 2 = x2 . π The area of the smaller circle is then πr 2 = x2 . 2 The ratio of the area P to the area of the smaller circle is then 1 2 π 2 x : x = 1 : 2π, 4 2 hence (E). 9 2000 S.11 (31%) ©2014 Australian Mathematics Trust www.amt.edu.au Alternative 1 Since two non-shaded squares are added for every shaded square at every step, the ratio of the shaded area to the non-shaded area will be 13 , hence (A). . ...... .............. .. .................. ......... ................................................ ...................................... ...................................... ...................................... ................... .................................................................................................. .............................................................................. .............................................................................. .............................................................................. .............................................................................. .............................................................................. .. ... ... .... ... ... . .................................................................................................. .......................................................... 5
© Copyright 2026 Paperzz