Math 3113 - Multivariable Calculus Homework #4 - 2008.02.06 Due Date - 2008.02.13 Solutions Find an equation of the form r = f (θ, z) in cylindrical coordinates for the following surfaces. 1. x2 + y 2 + z 2 = 4 x2 + y 2 + z 2 = 4 r2 + z 2 = 4 Solving for r gives r= 2. x2 − y 2 = 4 p 4 − z 2. x2 − y 2 = 4 Solving for r gives 3. z = 3xy r2 cos2 (θ) − r2 sin2 (θ) = 4 r2 cos2 (θ) − sin2 (θ) = 4 2 2 r= q =p . 2 cos(2θ) cos2 (θ) − sin (θ) z = 3xy z = 3r2 cos(θ) sin(θ) Solving for r gives r= r z = 3 cos(θ) sin(θ) 1 s 2z . 3 sin(2θ) 2 Find an equation of the form ρ = f (θ, φ) in spherical coordinates for the following surfaces. 4. z = 2 z=2 ρ cos(φ) = 2 Solving for ρ gives ρ= 2 . cos(φ) 5. x = z 2 x = z2 ρ cos(θ) sin(φ) = ρ2 cos2 (φ) cos(θ) sin(φ) = ρ cos2 (φ) Solving for ρ gives ρ= cos(θ) tan(φ) . cos(φ) 6. x2 − y 2 = 4 x2 − y 2 = 4 ρ2 sin2 (φ) cos2 (θ) − ρ2 sin2 (φ) sin2 (θ) = 4 ρ2 sin2 (φ) cos2 (θ) − sin2 (θ) = 4 ρ2 sin2 (φ) cos(2θ) = 4 Solving for ρ gives ρ= 1 2 p . sin(φ) cos(2θ) 3 Sketch the graphs of the following sets of points in spherical coordinates. 7. ρ = 8, 0 ≤ θ ≤ 2π, 0≤φ≤ π 2 This is the upper half sphere of radius 8. 10 8 6 4 -10 2 -8 -6 -4 -2 y 10 8 6 4 0 2 0 0 -6 -4 -2 x 2-2 4 6 -4 z -6 -8 -10 8 10 -8 -10 4 8. θ = 2π 3 , 0 ≤ ρ ≤ 4, 0≤φ≤π This is the disc of radius 4 centered on the z-axis which forms an angle of θ = 2π 3 in the xy-plane. -4 -2 y 4.0 -3.6 3.2 2.4 1.6 x 0.4 -1.6 0.8 0 0.0 -0.8 2.4 -1.6 z -2.4 -3.2 -4.0 2 4 5 9. φ = π 6, This is 1 4 0 ≤ ρ ≤ 2, 3π 2 ≤ θ ≤ 2π portion of the upper cone located in the octant with negative y and positive x coordinates. -2 -2 2.0 1.6 y -1 1.2 x -1 0.8 0.4 0 0 0.0 -0.4 1 -0.8z -1.2 1 -1.6 2 -2.0 2 6 Sketch the graphs of the following sets of points in cylindrical coordinates. 10. r = 4, 0 ≤ θ ≤ π, 0≤z≤4 This is half a cylinder of radius 4 with positive y-coordinates and height 4 starting in the xy-plane. 5 -5 4 3 -5 -4 -3 y -3 x 2 -2 -2 1 -1-1 00 1 -1 2 3 -4 z -2 -3 4 -4 5 -5 0 1 2 3 4 5 7 11. θ = π 3, 0 ≤ r ≤ 5, −4 ≤ z ≤ 0 This is a plane of height 4 starting at z = −4 which is 5 units long and forms an angle of θ = 5 4 3 2 -5 -5 1 -4 -3 -3 -1 00 1 2 5 -1 -1 y 3 -2 0 -2 4 -4 z -2 x 1 2 3 4 -3 -4 -5 5 π 3 with the xy-plane. 8 12. z = −2, 0 ≤ r ≤ 5, π2 ≤ θ ≤ 3π 2 This is a half disc of radius 5 located 5 units below the xy-plane with negative x-coordinates. 5 4 3 2 -5 -5 -4 1 -4 -3 -3 -2 y 5 00 1 2 2 4 x -1 -1 -1 1 3 -2 0 -2 z 3 4 -3 -4 -5 5
© Copyright 2026 Paperzz