Lesson 2 sumdifference identities.notebook March 07, 2014 Sum and DifferenceIdentities For angles A and B it can be proven geometrically that sin ( A + B ) = sin A cos B + cos A sin B and sin ( A - B ) = sin A cos B - cos A sin B It can also be shown that cos ( A + B ) = cos A cos B - sin A sin B and cos ( A - B ) = cos A cos B + sin A sin B. Application We can use the formulas to help us find values not on the unit circle. cos ( A + B ) = cos A cos B - sin A sin B Find the exact value of cos 75 Lesson 2 sumdifference identities.notebook Find the exact value of cos 15 March 07, 2014 cos ( A - B ) = cos A cos B + sin A sin B **If you get a problem in radians, then convert it to degrees. Then find the appropriate numbers for a sum/difference formula. example: cos 5π 12 5π 12 . 180 π Find the exact value of sin 7π 12 . 180 = 105 π = 75 7π 12 so this is the same as cos 75 sin ( A + B ) = sin A cos B + cos A sin B sin ( A - B ) = sin A cos B - cos A sin B 60 + 45 150-45 Lesson 2 sumdifference identities.notebook You Try: March 07, 2014 sin 255 Using the sine and cosine formulas, it can be shown that ( tan A + tan B ) tan ( A + B ) = ( 1 - tan A tan B ) and tan ( A - B ) = ( tan A - tan B ) ( 1 + tan A tan B ) Lesson 2 sumdifference identities.notebook Application March 07, 2014 tan ( A + B ) = Find the exact value of tan 105 Find: tan (-105 ) tan ( A - B ) = ( tan A - tan B ) ( 1 + tan A tan B ) ( tan A + tan B ) ( 1 - tan A tan B ) Lesson 2 sumdifference identities.notebook March 07, 2014 Application: Problems in esreveR Find the exact value of sin80 cos20 - cos80 sin20 You try: cos70 cos20 - sin70 sin20 Find: tan 20 + tan25 1 - tan20 tan25 sin π cos 7π - cos π sin 7π 12 12 12 12
© Copyright 2026 Paperzz