40 Sum and Difference Identities In this section, you will learn how to apply identities involving the sum or difference of two variables. Formulas for sin (x + y) and sin (x − y) Let x and y be two angles as shown in Figure 115. Figure 115 Let A be the point on the x-axis such that |OA| = 1. From A drop the perpendicular to the terminal side of x. From B drop the perpendicular to the x-axis. Then Area ∆OAB = Area ∆OAC + area∆OCB. But 1 1 Area ∆OAC = |OC||AC| = sin x cos x. 2 2 1 1 Area ∆OCB = |OC||BC| = |OB|2 sin y cos y. 2 2 1 1 Area ∆OAB = |BD||OA| = |OB| sin (x + y). 2 2 Hence, 1 1 1 |OB| sin (x + y) = sin x cos x + |OB|2 sin y cos y. 2 2 2 197 2 and using the fact that |OB| = Mutliplying both sides by |OB| obtains the addition formula for the sine function: cos x cos y one sin (x + y) = sin x cos y + cos x sin y. To find the difference formula for the sine function we proceed as follows: sin (x − y) = sin (x + (−y)) = sin x cos (−y) + cos x sin (−y) = sin x cos y − cos x sin y where we use the fact that the sine function is odd and the cosine function is even. Example 40.1 Find the exact value of sin 75◦ . Solution. Notice first that 75◦ = 30◦ + 45◦ . Thus, sin 75◦ = sin (45◦ + 30◦ ) ◦ = sin 45 cos 30√◦ + cos√45◦√sin 30◦ √ √ 2 3 = + 22 12 = 6+4 2 2 2 Example 40.2 π . Find the exact value of sin 12 Solution. π Since 12 = π 4 − π3 , the difference formula for sine gives π sin 12 = sin ( π4 − π6 ) π = √ sin√π4 cos√π6 − cos√π4 sin √ 6 = 22 23 − 22 12 = 6−4 2 Example 40.3 Show that cos ( π2 − x) = sin x using the difference formula of the sine function. 198 Solution. Since the sine function is an odd function then we can write sin x = − sin (−x) = − sin [( π2 − x) − π2 ] = −[sin ( π2 − x) cos ( π2 ) − cos ( π2 − x) sin ( π2 )] = cos ( π2 − x) Theorem 40.1 (Cofunctions Identities) For any angle x, measured in radians, we have sin ( π2 − x) = cos x sec ( π2 − x) = csc x tan ( π2 − x) = cot x cos ( π2 − x) = sin x csc ( π2 − x) = sec x cot ( π2 − x) = tan x Proof. Recall that sin ( π2 ) = 1 and cos ( π2 ) = 0. sin ( π2 − x) cos ( π2 − x) sec ( π2 − x) csc ( π2 − x) = sin ( π2 ) cos x − cos ( π2 ) sin x = cos x = sin x (See Example 16.3) 1 = = sin1 x = csc x cos ( π2 −x) 1 = cos1 x = sec x = sin ( π −x) tan ( π2 − x) = cot ( π2 − x) = 2 sin ( π2 −x) x = cos = cot x cos ( π2 −x) sin x 1 1 = cot x = tan x tan ( π2 −x) Formulas for cos (x + y) and cos (x − y) Since sin x and cos x are cofunctions of each other then cos (x + y) = sin ( π2 − (x + y)) = sin ( π2 − x) − y = sin ( π2 − x) cos y − cos ( π2 − x) sin y = cos x cos y − sin x sin y For the difference formula we have cos (x − y) = cos (x + (−y)) = cos x cos (−y) − sin x sin (−y) = cos x cos y + sin x sin y where we have used the fact that the sine function is odd and the cosine is even. 199 Example 40.4 . Find the exact value of cos 7π 12 Solution. cos 7π = cos ( π4 + π3 ) 12 π π π = √ cos 4 cos − sin√π4 sin √ 3√ √ 3 = 22 12 − 22 23 = 2−4 6 Example 40.5 Find the exact value of: sin 42◦ cos 12◦ − cos 42◦ sin 12◦ . Solution. sin 42◦ cos 12◦ − cos 42◦ sin 12◦ = sin (42◦ − 12◦ ) = sin 30◦ = 21 . Example 40.6 √ Suppose that α and β are both in the third quadrant and that sin α = − 23 and sin β = − 12 . Determine the value of cos (α + β). Solution. p Since α and β are in the third √quadrant then cos α = − 1 − sin2 α = − 12 p and cos β = − 1 − sin2 β = − 23 . Thus, cos (α + β) = cos α cos β − √sin α sin β √ 3 1 = (− 2 )(− 2 ) − (− 23 )(− 12 ) = 0 Formulas for tan (x + y) and tan (x − y) Using the sum formulas for the sine and the cosine functions we have tan (x + y) = = = sin (x+y) cos (x+y) sin x cos y+cos x sin y cos x cos y−sin x sin y sin x cos y cos x sin y + cos cos x cos y x cos y = sin x sin y 1− cos x cos y tan x+tan y 1−tan x tan y For the difference formula we have tan x+tan (−y) tan (x − y) = tan (x + (−y)) = 1−tan x tan (−y) tan x−tan y = 1+tan x tan y since tan (−x) = − tan x. 200 Example 40.7 Establish the identity: tan (θ + π) = tan θ. Solution. tan (θ + π) = tan θ+tan π 1−tan θ tan π = tan θ since tan π = 0. 201 Review Problems Exercise 40.1 Find the exact value of the expression ◦ (a) sin (45◦ + 30 ). π π (b) cos 4 − 3 . (c) tan π6 + π4 . Exercise 40.2 Find the exact value of the expression (a) cos 212◦ cos 122◦ + sin 212◦ sin 122◦ . (b) sin 167◦ cos 107◦ − cos 167◦ sin 107◦ . Exercise 40.3 Find the exact value of the expression (a) sin 5π cos π4 − cos 5π sin π4 . 12 12 π π π (b) cos 12 cos 4 − sin 12 sin π4 . Exercise 40.4 Find the exact value of the expression (a) (b) tan 7π −tan π4 12 . 1+tan 7π tan π4 12 π π tan 6 +tan 3 . 1−tan π6 tan π3 Exercise 40.5 Write each expression in terms of a single trigonometric function. (a) sin x cos 3x + cos x sin 3x. (b) sin 7x cos 3x − sin x sin 5x. Exercise 40.6 Write each expression in terms of a single trigonometric function. (a) cos 4x cos (−2x) − sin 4x sin (−2x). tan 3x+tan 4x (b) 1−tan . 3x tan 4x tan 2x−tan 3x (c) 1+tan 2x tan 3x . 202 Exercise 40.7 8 , α in Quadrant I, and sin β = − 17 , β in Quadrant II, find Given tan α = 24 7 the exact value of (a) sin (α + β) (c) tan (α − β). (b) cos (α + β) Exercise 40.8 12 Given sin α = − 45 , α in Quadrant III, and cos β = − 13 , β in Quadrant II, find the exact value of (a) sin (α − β) (b) cos (α + β) (c) tan (α + β). Exercise 40.9 Given cos α = − 35 , α in Quadrant III, and sin β = the exact value of (a) sin (α − β) (b) cos (α + β) 5 , 13 β in Quadrant I, find (c) tan (α + β). Exercise 40.10 Establish the following identities: (a) sin θ + π2 = cos θ. (b) csc (π − θ) = csc θ. Exercise 40.11 Establish the following identities: (a) sin 6x cos 2x − cos 6x sin 2x = 2 sin 2x cos 2x. (b) sin (α + β) + sin (α − β) = 2 sin α cos β. Exercise 40.12 Establish the following identity: sin (α+β) sin (α−β) = 1+cot α tan β . 1−cot α tan β Exercise 40.13 Write the given expression as a function of only sin θ, cos θ, or tan θ. (k is a given integer) (a) cos (θ + 3π) (b) cos [θ + (2k + 1)π] 203 (c) sin (θ + 2kπ). Exercise 40.14 Establish the identity sin h sin (x + h) − sin x = cos x + sin x h h cos h − 1 h . Exercise 40.15 Establish the identity cos (x + h) − cos x = cos x h 204 cos h − 1 h − sin x sin h . h
© Copyright 2026 Paperzz