40 Sum and Difference Identities

40
Sum and Difference Identities
In this section, you will learn how to apply identities involving the sum or
difference of two variables.
Formulas for sin (x + y) and sin (x − y)
Let x and y be two angles as shown in Figure 115.
Figure 115
Let A be the point on the x-axis such that |OA| = 1. From A drop the
perpendicular to the terminal side of x. From B drop the perpendicular to
the x-axis. Then
Area ∆OAB = Area ∆OAC + area∆OCB.
But
1
1
Area ∆OAC = |OC||AC| = sin x cos x.
2
2
1
1
Area ∆OCB = |OC||BC| = |OB|2 sin y cos y.
2
2
1
1
Area ∆OAB = |BD||OA| = |OB| sin (x + y).
2
2
Hence,
1
1
1
|OB| sin (x + y) = sin x cos x + |OB|2 sin y cos y.
2
2
2
197
2
and using the fact that |OB| =
Mutliplying both sides by |OB|
obtains the addition formula for the sine function:
cos x
cos y
one
sin (x + y) = sin x cos y + cos x sin y.
To find the difference formula for the sine function we proceed as follows:
sin (x − y) =
sin (x + (−y))
= sin x cos (−y) + cos x sin (−y)
=
sin x cos y − cos x sin y
where we use the fact that the sine function is odd and the cosine function
is even.
Example 40.1
Find the exact value of sin 75◦ .
Solution.
Notice first that 75◦ = 30◦ + 45◦ . Thus,
sin 75◦ =
sin (45◦ + 30◦ )
◦
= sin 45
cos 30√◦ + cos√45◦√sin 30◦
√ √
2 3
=
+ 22 12 = 6+4 2
2 2
Example 40.2
π
.
Find the exact value of sin 12
Solution.
π
Since 12
=
π
4
− π3 , the difference formula for sine gives
π
sin 12
=
sin ( π4 − π6 )
π
= √
sin√π4 cos√π6 − cos√π4 sin
√ 6
= 22 23 − 22 12 = 6−4 2
Example 40.3
Show that cos ( π2 − x) = sin x using the difference formula of the sine function.
198
Solution.
Since the sine function is an odd function then we can write
sin x =
− sin (−x) = − sin [( π2 − x) − π2 ]
= −[sin ( π2 − x) cos ( π2 ) − cos ( π2 − x) sin ( π2 )]
=
cos ( π2 − x)
Theorem 40.1 (Cofunctions Identities)
For any angle x, measured in radians, we have
sin ( π2 − x) = cos x
sec ( π2 − x) = csc x
tan ( π2 − x) = cot x
cos ( π2 − x) = sin x
csc ( π2 − x) = sec x
cot ( π2 − x) = tan x
Proof.
Recall that sin ( π2 ) = 1 and cos ( π2 ) = 0.
sin ( π2 − x)
cos ( π2 − x)
sec ( π2 − x)
csc ( π2 − x)
= sin ( π2 ) cos x − cos ( π2 ) sin x = cos x
=
sin x (See Example 16.3)
1
=
= sin1 x = csc x
cos ( π2 −x)
1
= cos1 x = sec x
=
sin ( π −x)
tan ( π2 − x) =
cot ( π2 − x) =
2
sin ( π2 −x)
x
= cos
= cot x
cos ( π2 −x)
sin x
1
1
= cot x = tan x
tan ( π2 −x)
Formulas for cos (x + y) and cos (x − y)
Since sin x and cos x are cofunctions of each other then
cos (x + y) = sin ( π2 − (x + y)) = sin ( π2 − x) − y
= sin ( π2 − x) cos y − cos ( π2 − x) sin y
=
cos x cos y − sin x sin y
For the difference formula we have
cos (x − y) =
cos (x + (−y))
= cos x cos (−y) − sin x sin (−y)
=
cos x cos y + sin x sin y
where we have used the fact that the sine function is odd and the cosine is
even.
199
Example 40.4
.
Find the exact value of cos 7π
12
Solution.
cos 7π
=
cos ( π4 + π3 )
12
π
π
π
= √
cos 4 cos
− sin√π4 sin
√ 3√
√ 3
= 22 12 − 22 23 = 2−4 6
Example 40.5
Find the exact value of: sin 42◦ cos 12◦ − cos 42◦ sin 12◦ .
Solution.
sin 42◦ cos 12◦ − cos 42◦ sin 12◦ = sin (42◦ − 12◦ ) = sin 30◦ = 21 .
Example 40.6
√
Suppose that α and β are both in the third quadrant and that sin α = − 23
and sin β = − 12 . Determine the value of cos (α + β).
Solution.
p
Since α and β are in the third √quadrant then cos α = − 1 − sin2 α = − 12
p
and cos β = − 1 − sin2 β = − 23 . Thus,
cos (α + β) =
cos α
cos β − √sin α sin β
√
3
1
= (− 2 )(− 2 ) − (− 23 )(− 12 ) = 0
Formulas for tan (x + y) and tan (x − y)
Using the sum formulas for the sine and the cosine functions we have
tan (x + y) =
=
=
sin (x+y)
cos (x+y)
sin x cos y+cos x sin y
cos x cos y−sin x sin y
sin x cos y
cos x sin y
+ cos
cos x cos y
x cos y
=
sin x sin y
1− cos
x cos y
tan x+tan y
1−tan x tan y
For the difference formula we have
tan x+tan (−y)
tan (x − y) = tan (x + (−y)) = 1−tan
x tan (−y)
tan x−tan y
=
1+tan x tan y
since tan (−x) = − tan x.
200
Example 40.7
Establish the identity: tan (θ + π) = tan θ.
Solution.
tan (θ + π) =
tan θ+tan π
1−tan θ tan π
= tan θ since tan π = 0.
201
Review Problems
Exercise 40.1
Find the exact value of the expression
◦
(a) sin (45◦ + 30
).
π
π
(b) cos 4 − 3 .
(c) tan π6 + π4 .
Exercise 40.2
Find the exact value of the expression
(a) cos 212◦ cos 122◦ + sin 212◦ sin 122◦ .
(b) sin 167◦ cos 107◦ − cos 167◦ sin 107◦ .
Exercise 40.3
Find the exact value of the expression
(a) sin 5π
cos π4 − cos 5π
sin π4 .
12
12
π
π
π
(b) cos 12 cos 4 − sin 12 sin π4 .
Exercise 40.4
Find the exact value of the expression
(a)
(b)
tan 7π
−tan π4
12
.
1+tan 7π
tan π4
12
π
π
tan 6 +tan 3
.
1−tan π6 tan π3
Exercise 40.5
Write each expression in terms of a single trigonometric function.
(a) sin x cos 3x + cos x sin 3x.
(b) sin 7x cos 3x − sin x sin 5x.
Exercise 40.6
Write each expression in terms of a single trigonometric function.
(a) cos 4x cos (−2x) − sin 4x sin (−2x).
tan 3x+tan 4x
(b) 1−tan
.
3x tan 4x
tan 2x−tan 3x
(c) 1+tan 2x tan 3x .
202
Exercise 40.7
8
, α in Quadrant I, and sin β = − 17
, β in Quadrant II, find
Given tan α = 24
7
the exact value of
(a) sin (α + β)
(c) tan (α − β).
(b) cos (α + β)
Exercise 40.8
12
Given sin α = − 45 , α in Quadrant III, and cos β = − 13
, β in Quadrant II,
find the exact value of
(a) sin (α − β)
(b) cos (α + β)
(c) tan (α + β).
Exercise 40.9
Given cos α = − 35 , α in Quadrant III, and sin β =
the exact value of
(a) sin (α − β)
(b) cos (α + β)
5
,
13
β in Quadrant I, find
(c) tan (α + β).
Exercise 40.10
Establish the following identities:
(a) sin θ + π2 = cos θ.
(b) csc (π − θ) = csc θ.
Exercise 40.11
Establish the following identities:
(a) sin 6x cos 2x − cos 6x sin 2x = 2 sin 2x cos 2x.
(b) sin (α + β) + sin (α − β) = 2 sin α cos β.
Exercise 40.12
Establish the following identity:
sin (α+β)
sin (α−β)
=
1+cot α tan β
.
1−cot α tan β
Exercise 40.13
Write the given expression as a function of only sin θ, cos θ, or tan θ. (k is a
given integer)
(a) cos (θ + 3π)
(b) cos [θ + (2k + 1)π]
203
(c) sin (θ + 2kπ).
Exercise 40.14
Establish the identity
sin h
sin (x + h) − sin x
= cos x
+ sin x
h
h
cos h − 1
h
.
Exercise 40.15
Establish the identity
cos (x + h) − cos x
= cos x
h
204
cos h − 1
h
− sin x
sin h
.
h