Interaction of Organic Radicals with Transition Metals Ph3P Cl IrI CO PPh3 R• R Ph3P Cl IrII CO PPh3 Chris Prier MacMillan Group Meeting March 23, 2011 RX R Ph3P Cl IrIII X CO PPh3 R• Interaction of Organic Radicals with Transition Metals CuII Ar1• H2C=CH2 Br CH3CH2• L PdII I CH3CH2X Br L PdIII I Et Ph Br Bn N Ph metal-radical interactions in asymmetric catalysis CH2 Et n-Hex FeII Ph !-carbonyl radicals R O O N Me Ar1 radical mechanism of oxidative addition oxidation of alkyl radicals Bn O CoII coenzyme vitamin B12 Interaction of Organic Radicals with Transition Metals CuII Ar1• H2C=CH2 Br CH3CH2• L PdII I CH3CH2X Br L PdIII I Et Ph Br Bn N Ph metal-radical interactions in asymmetric catalysis CH2 Et n-Hex FeII Ph !-carbonyl radicals R O O N Me Ar1 radical mechanism of oxidative addition oxidation of alkyl radicals Bn O CoII coenzyme vitamin B12 Transition Metals and Organic Radicals ! What are the mechanisms by which an alkyl radical can interact with a transition metal? addition to the metal R Mn+1Xm ligand transfer R• MnXm R X Mn-1Xm-1 R± Mn±1Xm electron transfer ! Different CuII sources show divergent reactivity with respect to ethyl radical CuSO4 CH3CH2• CuCl2 H2C=CH2 CH3CH2• CH3CH2Cl Kochi, J. K. Science. 1967, 27, 415-424. Oxidation of Alkyl Radicals by CuII ! Oxidation by CuSO4 is an electron transfer processes (outer-sphere) CuII + CuI CH3CH2• + CH3CH2+ + H2C=CH2 H+ ! Radicals which would give more stabilized carbocations give more substitution product Cu(OAc)2 exclusive product Cu(OAc)2 O t-BuO 80% Me 20% OAc Me Cu(OAc)2 Me Me 20% 80% ! Stabilities of the oxidation products do not control the selectivity of oxidative elimination CuII thermodynamic distribution at 30 ºC: 55% 23% 22% 2% 75% 20% Kochi, J. K. Science. 1967, 27, 415-424. Oxidation of Alkyl Radicals by CuII ! Oxidation by CuCl2 is a ligand transfer processes (inner-sphere) Cl CuII Cl + CH3CH2• H3CH2C Cl CH3CH2Cl CuII Cl Cl CuI ! Oxidation of neopentyl radical gives no rearranged products with CuCl2 Cu(OAc)2 CuCl2 Cl OAc carbocation rearrangement products exclusive product ! Product ratios match those obtained with atom transfer reagents Cl Cl CuCl2: t-BuOCl: 70% 70% 30% 30% ! Analogy with Taube inorganic ligand transfer process [CrII(H2O)5]2+ [CoIII(NH3)5Cl]2+ [(H2O)5CrII–Cl–CoIII(NH3)5]4+ [CrIII(H2O)5Cl]2+ [CoII(NH3)5]2+ Kochi, J. K. Science. 1967, 27, 415-424. Metal-Alkyl Bond Strengths ! Metal-alkyl bonds are characteristically weak, correlate with degree of steric crowding bond dissociation energy (kcal/mol) 2 (py)(SALOPH)Co–CH2CH2CH3 (py)(SALOPH)Co–CH(CH3)2 (py)(SALOPH)Co–CH2C(CH3)3 (py)(SALOPH)Co–CH2C6H5 (PMe2Ph)(DH)2Co–CH(CH3)C6H5 (PEtPh2)(DH)2Co–CH(CH3)C6H5 (PPh3)(DH)2Co–CH(CH3)C6H5 25 20 18 22 24 19 17 (CO)5Mn–CH3 (CO)5Mn–CF3 (CO)5Mn–C6H5 (CO)5Mn–CH2C6H5 (CO)5Mn–COC6H5 37 41 41 21 21 (CO)5Re–CH3 53 SALOPH = N,N'-disalicylidene-o-phenylenediamine, (DH)2 = dimethylglyoxime Halpern, J. Inorg. Chim. Acta. 1985, 100, 41-48. Brown, D. L. S.; Connor, J. A.; Skinner, H. A. J. Organomet. Chem. 1974, 81, 403-409. Connor, J. A. et al. Organometallics. 1982, 1, 1166-1174. Interaction of Organic Radicals with Transition Metals CuII Ar1• H2C=CH2 Br CH3CH2• L PdII I CH3CH2X Br L PdIII I Et Ph Br Bn N Ph metal-radical interactions in asymmetric catalysis CH2 Et n-Hex FeII Ph !-carbonyl radicals R O O N Me Ar1 radical mechanism of oxidative addition oxidation of alkyl radicals Bn O CoII coenzyme vitamin B12 Interaction of Organic Radicals with Transition Metals CuII Ar1• H2C=CH2 Br CH3CH2• L PdII I CH3CH2X Br L PdIII I Et Ph Br Bn N Ph metal-radical interactions in asymmetric catalysis CH2 Et n-Hex FeII Ph !-carbonyl radicals R O O N Me Ar1 radical mechanism of oxidative addition oxidation of alkyl radicals Bn O CoII coenzyme vitamin B12 Two-Electron Mechanisms of Oxidative Addition ! Concerted pathway: cis insertion via a three-center, two-electron bond Br Ph Br L2Pd L2Pd0 Br L2PdII H H Ph Ph ! SN2-type substitution: highly nucleophilic metal complexes attack primary or secondary halides Ph3P Cl IrI CO PPh3 CH3Br + CH3 Ph3P CO Ir Cl PPh3 Br– Ph3P Cl CH3 CO IrIII PPh3 Br Hegedus, L. S. Transition Metals in the Synthesis of Complex Molecules. 1999, 2nd ed. One-Electron Mechanisms of Oxidative Addition ! Radical pathway (two inner sphere one-electron processes) initiation: propagation: Ph3P Cl Ph3P Cl IrI IrI In• CO Ph3P PPh3 Cl R• CO PPh3 RX In IrII CO Cl IrII Cl PPh3 R Ph3P In Ph3P CO IrIII X CO R• PPh3 R RX Ph3P Cl PPh3 IrIII X CO R• PPh3 Labinger, J. A.; Osborn, J. A.; Coville, N. J. Inorg. Chem. 1980, 19, 3236-3243. ! Electron-transfer mechanism (outer sphere one-electron process, then inner sphere one-electron process) + X Mn+2 X Mn Mn+1 X– Mn+1 X X– Mn+2 Tsou, T. T.; Kochi, J. K. J. Am. Chem. Soc. 1979, 101, 6319-6332. Stereochemical Consequence of Oxidative Addition Pathways ! Concerted pathway: requires retention of configuration Mn R1 ‡ Br Br M Br R3 R3 R2 R3 Mn+2 R2 R1 2 R1 R ! SN2-type substitution: requires inversion of configuration Mn Br R2 ‡ R1 R1 M R3 R1 Mn+2 Br + R3 R1 Br– Br Mn+2 R2 R2 R3 ! Radical pathways: likely to proceed with loss of stereochemistry Br Mn R1 R3 R2 R1 Mn+1 R2 R3 Mn+1 R1 R3 R2 R1 R3 R2 R3 R2 R1 R2 R3 Mn+2 Br Br Mn+2 R1 R3 R2 Stereochemical Consequence of Oxidative Addition Pathways ! Oxidative addition of alkyl halides to an IrI complex proceeds with loss of stereochemistry F F D Br Me3P Cl IrI D Ph F D CO Me3P PMe3 Cl IrI Br Ph F CO Ph Br D Me3P PMe3 Cl IrI Br CO Me3P Ph Cl IrI CO PMe3 PMe3 1:1 mixture Labinger, J. A.; Osborn, J. A. Inorg. Chem. 1980, 19, 3230-3236. ! Cross-coupling of endo- and exo-2-norbornane leads to the same exo product Br Br Ph 84% Ph 91% 6% NiI2 6% trans-2-aminocyclohexanol NaHMDS (2 equiv.) isopropanol, 60 ºC González-Bobes, F.; Fu, G. C. J. Am. Chem. Soc. 2006, 5360-5361. Evidence for Radical Chain Process ! Cis- and trans-1,2-dichloroethylene give the same isomeric mixture of oxidative addition product Cl or Me3P Cl IrI Cl CO Cl Cl Cl Me3P PMe3 Cl IrIII Cl Cl Me3P CO Cl PMe3 IrIII Cl CO PMe3 40:60 cis:trans Labinger, J. A.; Osborn, J. A.; Coville, N. J. Inorg. Chem. 1980, 19, 3236-3243. ! Complete retention of configuration is observed in the oxidative addition to Pd(PPh3)4 Cl Cl Cl Pd(PPh3)4 Ph3P Cl PdII Cl Pd(PPh3)4 PPh3 Cl Cl Ph3P Cl PdII PPh3 Fitton, P.; McKeon, J. E. Chem. Commun. 1968, 4-6. Evidence for Radical Chain Process ! Radical initiators promote the oxidative addition of alkyl halides to IrI complexes conversion (%) F Me3P Cl IrI CO Ph Br Ph F Me3P PMe3 65 ºC Cl IrIII CO PMe3 Br initiator after 100 min after 46 h 5 5 5 none AIBN benzoyl peroxide 11 34 36 100 100 ! Radical inhibitors depress the oxidative addition of alkyl halides to IrI complexes F Br Ph R3P Cl IrI CO PR3 inhibitor Ph CO2Et EtO2C R3P r.t. Cl 555 F IrIII CO PR3 none duroquinone galvinoxyl conversion (%) after 5 min 5 42 14 19 Br Labinger, J. A.; Osborn, J. A.; Coville, N. J. Inorg. Chem. 1980, 19, 3236-3243. Evidence for Radical Chain Process ! Rate of reactivity of alkyl halides is consistent with radical process, inconsistent with SN2 RX Me3P Cl IrI CO Me3P PMe3 Cl relative reactivity RX R IrIII 2 2 CO 1.0 (defined) 5.4 6.8 n-BuBr s-BuBr t-BuBr PMe3 X ! Trapping of radical intermediates with acrylonitrile Me3P Cl IrI CO i-PrI Me3P PMe3 Cl CN i-Pr CO IrIII PMe3 I CN n 10 equiv. MeI Me3P Cl IrI CO PMe3 Cl CN CN Me Me3P IrIII I CO PMe3 n not observed Labinger, J. A.; Osborn, J. A.; Coville, N. J. Inorg. Chem. 1980, 19, 3236-3243. Radical Cyclizations in Oxidative Addition ! Alkyl iodides bearing tethered alkenes undergo radical cyclization concomitant with oxidative addition O I O [Ni(py)4Cl2] (10%) (S)-(s-Bu)-Pybox (10%) O H O BrZn O O THF, 23 ºC O O H NiII O R= *L O NiIII I H O NiI I I L* O 79% O CH2 O H R NiI L* H O O L* O NiII NiIII I H R O O H R O H O O Phapale, V. B.; Buñuel, E.; García-Iglesias, M.; Cárdenas, D. J. Angew. Chem. Int. Ed. 2007, 46, 8790-8795. Alkyl Iodide Accelerated Kumada Couplings ! Isopropyl iodide accelerates the Kumada cross-coupling of aryl Grignard reagents Br MgCl OMe PEPPSI (2 mol%) OMe THF, 0 ºC rate enhancement due to presence of i-PrI conversion after 15 min Grignard prepared from PhCl and Mg/LiCl Grignard prepared from PhI and i-PrMgCl•LiCl 8% 82% ! Rate acceleration arises from initiation of radical pathway by isopropyl iodide Ar1 Br I L Pd0 Me Me Me Me L PdI Br I Ar2MgX Ar2 Ar1 Ar2 L PdI X L PdIII X Ar1 L PdII I Ar1• Br L PdIII I Ar1 Manolikakes, G.; Knochel, P. Angew. Chem. Int. Ed. 2009, 48, 205-209. Radical Cyclizations in the Accelerated Kumada Coupling ! Aryl halides bearing an alkene tether undergo radical cyclization OMe OMe MgCl Br PEPPSI (2 mol%) THF, 25 ºC OMe additive none i-PrI (1.1 equiv.) time 80% 34% 7% 50% 60 min 5 min ! No cyclized products are observed when the alkene tether is on the Grignard reagent Br I i-PrMgCl•LiCl PEPPSI (2 mol%) THF, -20 ºC, 1h THF, 25 ºC, 5 min MgCl OMe OMe 78% Manolikakes, G.; Knochel, P. Angew. Chem. Int. Ed. 2009, 48, 205-209. Interaction of Organic Radicals with Transition Metals CuII Ar1• H2C=CH2 Br CH3CH2• L PdII I CH3CH2X Br L PdIII I Et Ph Br Bn N Ph metal-radical interactions in asymmetric catalysis CH2 Et n-Hex FeII Ph !-carbonyl radicals R O O N Me Ar1 radical mechanism of oxidative addition oxidation of alkyl radicals Bn O CoII coenzyme vitamin B12 Interaction of Organic Radicals with Transition Metals CuII Ar1• H2C=CH2 Br CH3CH2• L PdII I CH3CH2X Br L PdIII I Et Ph Br Bn N Ph metal-radical interactions in asymmetric catalysis CH2 Et n-Hex FeII Ph !-carbonyl radicals R O O N Me Ar1 radical mechanism of oxidative addition oxidation of alkyl radicals Bn O CoII coenzyme vitamin B12 Oxidative Reactions with Manganese(III) Acetate ! Synthesis of !-lactones by reaction of Mn(OAc)3 with olefins O Mn(OAc)3•2H2O (2 equiv.) proposed intermediate: O HOAc, KOAc 135 ºC, 1 h " " O Ph HO 60% CH2 Heiba, E. I.; Dessau, R. M.; Koehl, W.J. J. Am. Chem. Soc. 1968, 90, 5905-5906. Heiba, E. I.; Dessau, R. M.; Rodewald, P. G. J. Am. Chem. Soc. 1974, 96, 7977-7981. ! Key mechanistic question: Is the species that adds to the olefin a free or metal-complexed radical? outer-sphere oxidation Me O O MnIII MnIII O O MnIII O Me HO O Me O inner-sphere oxidation styrene O styrene MnIII O MnII CH2 O Ph HO CH2 MnIII O O MnIII O MnIII O MnII R O Evidence Against Intermediacy of Discrete Radicals ! No polymerization of styrene observed Mn(OAc)3•2H2O no polymerization observed HOAc, Ac2O reflux Bush, J. B., Jr.; Finkbeiner, H. J. J. Am. Chem. Soc. 1968, 90, 5903-5905. ! Acetate esters add to olefins upon initiation with (Ot-Bu)2, but not Mn(OAc)3•2H2O Mn(OAc)3•2H2O no rxn HOAc, Ac2O reflux ClH2C O (Ot-Bu)2 O OEt C6H13 C6H13 155 ºC OEt Cl 73% Bush, J. B., Jr.; Finkbeiner, H. J. J. Am. Chem. Soc. 1968, 90, 5903-5905. Allen, J. C.; Cadogan, J. I. G.; Hey, D. H. J. Chem. Soc. 1965, 1918-1932. ! No dimerization of acetic acid radicals observed H3C O Mn(OAc)3•2H2O O OH Ac2O, reflux no alkene OH HO succinic acid not observed O Fristad, W. E.; Peterson, J. R.; Ernst, A. B.; Urbi, G. B. Tetrahedron. 1986, 42, 3429-3442. Evidence for Metal-Complexed Radical ! H/D exchange experiments show no rate dependence on the metal O A: 0.25 M Mn(OAc)3•2H2O B: no metal O O rateA = rateB + H3C OH D3C OD KOAc, reflux DH2C OD HOAc-d2 ! !-lactone formation exceeds total solution H/D exchange ! Results are only consistent with rate-determining enolization of complexed acetate Fristad, W. E.; Peterson, J. R.; Ernst, A. B.; Urbi, G. B. Tetrahedron. 1986, 42, 3429-3442. Consensus Mechanism of Manganese(III) Acetate Oxidation ! Rate-determining enolization followed by single-electron oxidation generates metal-bound radical Me O O MnIII MnIII O O MnIII -H+ O MnIII O MnIII Me O inner-sphere oxidation O MnII enolization CH2 MnIII O MnIII O MnII O CH2 O O Me styrene O MnII O MnIII O oxidative lactonization MnIII O MnIII O Ph MnII O MnII Ph Fristad, W. E.; Peterson, J. R.; Ernst, A. B.; Urbi, G. B. Tetrahedron. 1986, 42, 3429-3442. Oxidative Cyclization of !-Dicarbonyls ! Mn(OAc)3 initiates radical cyclizations of !-keto esters and 1,3-diketones O O O Mn(OAc)3•2H2O (2 equiv.) Cu(OAc)2•H2O (1 equiv.) OMe O OMe Me HOAc, 50 ºC, 1 h 71% (mixture of tautomers) Me Me O O Mn(OAc)3•2H2O (2 equiv.) Cu(OAc)2•H2O (1 equiv.) O Me HOAc, 25 ºC 48% O ! Cu(OAc)2 is used to oxidize the alkyl radical to the alkene O O O O O OMe OMe O OMe !-hydride elimination O O OMe Cu(OAc)2 Cu(OAc) Kates, S. A.; Dombroski, M. A.; Snider, B. B. J. Org. Chem. 1990, 55, 2427-2436. Oxidative Radical Cascade Cyclizations ! Mn(OAc)3 can initiate radical cascade cyclizations O O Mn(OAc)3•2H2O (2 equiv.) Cu(OAc)2•H2O (1 equiv.) OMe O MnII O CO2Me O OMe Me HOAc, r.t., 26 h Me Me O 86% O CO2Me !-hydride elimination O CO2Me CO2Me (14% without Cu(OAc)2) Me Me Me (OAc)2Cu Dombroski, M. A.; Kates, S. A.; Snider, B. B. J. Am. Chem. Soc. 1990, 112, 2759-2767. Me Me Mn(OAc)3•2H2O (2 equiv.) Cu(OAc)2•H2O (1 equiv.) Me Me H HOAc, r.t., 24 h O CO2Et Me O H 43% H CO2Et Zoretic, P. A.; Shen, Z.; Wang, M.; Riberio, A. A. Tetrahedron Lett. 1995, 36, 2925-2928. Indole Coupling via !-Carbonyl Radicals ! Baran's Cu(II)-mediated indole-carbonyl coupling LHMDS (3.3 equiv.) Cu(II)2-ethylhexanoate (1.5 equiv.) O NH N H THF -78 ºC to r.t. 2 equiv. O O NH O Me 43% 30% O O NH Ph O O O NH NH O Me H NH N Me Me Me Bn 51% 54%, 5:1 d.r. 53%, single diastereomer (5 equiv. indole: 77%) Baran, P. S.; Richter, J. M. J. Am. Chem. Soc. 2004, 126, 7450-7451. Baran, P. S.; Richter, J. M.; Lin, D. W. Angew. Chem. Int. Ed. 2005, 44, 609-612. Richter, J. M.; Whitefield, B. W.; Maimone, T. J.; Lin, D. W.; Castroviejo, M. P.; Baran, P. S. J. Am. Chem. Soc. 2007, 129, 12857-12869. Proposed Mechanism of Indole-Carbonyl Coupling ! Oxidation of enolate to !-ketoradical enables coupling with copper-coordinated indole LHMDS (3.3 equiv.) Cu(II)2-ethylhexanoate (1.5 equiv.) O N H O CuII N THF -78 ºC to r.t. Cu0 O NH O CuI CuI N O N Richter, J. M.; Whitefield, B. W.; Maimone, T. J.; Lin, D. W.; Castroviejo, M. P.; Baran, P. S. J. Am. Chem. Soc. 2007, 129, 12857-12869. Evidence for Electron Transfer via Copper Enolate ! Free N-H is required for reactivity under copper conditions Me Me LHMDS Cu(II)2-ethylhexanoate O no reaction N -78 ºC to r.t. N S O O ! Reaction proceeds with a known outer-sphere oxidant Me Me Me O Me O O N N S Me O Fe+ PF6- N O Me N S O LHMDS, NEt3 N S O O discrete !-carbonyl radical implicates inner-sphere oxidation via indole-bound copper enolate: O CuII N O 11%, 4.5:1 d.r. (after benzoylation) CuI N O N Richter, J. M.; Whitefield, B. W.; Maimone, T. J.; Lin, D. W.; Castroviejo, M. P.; Baran, P. S. J. Am. Chem. Soc. 2007, 129, 12857-12869. Oxidative Enolate Coupling ! Enables the synthesis of 1,4-dicarbonyl compounds via !-carbonyl radicals lithium amide base CuBr2 (2 equiv.) O O Me t-BuO Ot-Bu t-BuO O 85% ! Reaction does not proceed via formation of the !-bromoester O Br t-BuO O OLi Ot-Bu t-BuO t-BuO O 10% ! Proposed to proceed via single-electron oxidation of enolate to !-carbonyl radical O t-BuO O Me t-BuO CuII O CuI t-BuO Rathke, M. W.; Lindert, A. J. J. Am. Chem. Soc. 1971, 93, 4605-4606. Oxidative Enolate Coupling ! Heterocoupling can be achieved in the coupling of imides or amides with ketones or esters O O R1 Fe(acac)3 (2.0 equiv.) or Cu(2-ethylhexanoate)2 (2.0 equiv.) LDA (2.1 equiv.) R4 R2 1 equiv. R3 O R4 R1 R3 1 equiv. R2 THF, -78 ºC to r.t. O OBn O O O Me O Ph N Ph O O O O N Bn Me O Fe(III): 60%, 2.6:1 d.r. O O O Me O N O Ph Bn Fe(III): 57%, 1.8:1 d.r. Cu(II): 55%, 1:1.6 d.r. O N MOM Fe(III): 73%, 2:1 d.r. i-Pr CO2t-Bu Ph Cu(II): 62%, 1.2:1 d.r. (1.75 equiv. ester) Baran, P. S.; DeMartino, M. P. Angew. Chem. Int. Ed. 2006, 45, 7083-7086. DeMartino, M. P.; Chen, K.; Baran, P. S. J. Am. Chem. Soc. 2008, 130, 11546-11560. Proposed Mechanism of Oxidative Enolate Coupling ! Formation of ketone-iron enolate followed by single-electron oxidation furnishes !-carbonyl radical O O O O O N Ph Bn Li O Ph N LDA Fe(III) O Bn O O O Me FeIII Li O Ph Ph Bn O Me N FeII FeII O O O Me Ph N Ph O Bn Ph Ph Me O Me FeIII Ph Baran, P. S.; DeMartino, M. P. Angew. Chem. Int. Ed. 2006, 45, 7083-7086. DeMartino, M. P.; Chen, K.; Baran, P. S. J. Am. Chem. Soc. 2008, 130, 11546-11560. Mechanism of Oxidative Enolate Coupling ! Fe(III) and Cu(II) show divergent reactivity in cyclopropane radical clock studies O O Fe(III) or Cu(II) LDA (2.1 equiv.) O O N O O O N Ph Ph Bn THF, -78 ºC to r.t. Me Bn Ph Ph Ph Fe(III): trace Cu(II): 20% (mixture of ring-opened products) O O O O Ph Ph N Ph Bn O Fe(III) or Cu(II) LDA (2.1 equiv.) Ph Ph THF, -78 ºC to r.t. Ph Ph Fe(III): trace Cu(II): 14% DeMartino, M. P.; Chen, K.; Baran, P. S. J. Am. Chem. Soc. 2008, 130, 11546-11560. Mechanism of Oxidative Enolate Coupling ! Fe(III) and Cu(II) promote cyclization with tethered olefins O O O Me Fe(III) or Cu(II) LDA (2.1 equiv.) Me O N O O Me Me N THF, -78 ºC to r.t. Bn Bn Fe(III): 27% Cu(II): 28% DeMartino, M. P.; Chen, K.; Baran, P. S. J. Am. Chem. Soc. 2008, 130, 11546-11560. ! Extent to which metal enolate behaves like an !-carbonyl radical depends on the identity of the metal Mn •R O O R X X Y Y Mn-1 O •R O R X X Y Y DeMartino, M. P.; Chen, K.; Baran, P. S. J. Am. Chem. Soc. 2008, 130, 11546-11560. Interaction of Organic Radicals with Transition Metals CuII Ar1• H2C=CH2 Br CH3CH2• L PdII I CH3CH2X Br L PdIII I Et Ph Br Bn N Ph metal-radical interactions in asymmetric catalysis CH2 Et n-Hex FeII Ph !-carbonyl radicals R O O N Me Ar1 radical mechanism of oxidative addition oxidation of alkyl radicals Bn O CoII coenzyme vitamin B12 Interaction of Organic Radicals with Transition Metals CuII Ar1• H2C=CH2 Br CH3CH2• L PdII I CH3CH2X Br L PdIII I Et Ph Br Bn N Ph metal-radical interactions in asymmetric catalysis CH2 Et n-Hex FeII Ph !-carbonyl radicals R O O N Me Ar1 radical mechanism of oxidative addition oxidation of alkyl radicals Bn O CoII coenzyme vitamin B12 Asymmetric Negishi Coupling of !-Bromoamides ! Racemic starting material is converted to single enantiomer product via radical intermediate 10% NiCl2•glyme 13% (R)-(i-Pr)-Pybox O Bn Et N Ph n-Hex Br O Bn ZnBr DMI/THF (7:1) 0 ºC, 12 h 1.3 equiv. Et N Ph n-Hex 90%, 95% ee racemic !-bromoamide NiII NiIII Br O O Bn N X Et Ph NiI Bn O Et N Ph NiII X Bn O Et N Ph NiIII X X n-Hex ZnBr Bn Et N Ph NiIII n-Hex X achiral radical intermediate Fischer, C. F.; Fu, G. C. J. Am. Chem. Soc. 2005, 127, 4594-4595. Asymmetric Cross Coupling of Alkyl Halides ! Wide range of asymmetric cross couplings of racemic secondary alkyl halides has been developed O n-Hex O Me Ph Et BHTO Ph Me Ph 81%, 92% 80%, 99% ee 89%, 96% ee !-bromoketones !-bromoesters secondary benzylic halides Angew. Chem. Int. Ed. 2009, 48, 154-156. J. Am. Chem. Soc. 2010, 132, 1264-1266. J. Am. Chem. Soc. 2008, 130, 3302-3303. J. Am. Chem. Soc. 2005, 127, 10482-10483. n-Hex Me Ph O n-Bu Bn Me Ph N Ph Me O n-Hex 95%, 87% ee 84%, 94% ee 80%, 94% ee secondary allylic chlorides homobenzylic halides acylated halohydrins J. Am. Chem. Soc. 2008, 130, 2756-2757. J. Am. Chem. Soc. 2008, 130, 6694-6695. J. Am. Chem. Soc. 2010, 132, 11908-11909. Enantioselective Oxidative Biaryl Coupling ! A copper/chiral diamine catalyst controls the dimerization of 2-naphthol derivatives N H CO2Me CO2Me N H 10 mol% OH OH OH H 85%, 93% ee CO2Me N N HO CuI (10 mol%), O2 MeCN, 48 h, 40 ºC H enolization and catalyst release CuII I H MeO H N O CuI MeO N N N O CuI H H O O H H O O OMe Li, X.; Yang, J.; Kozlowski, M. C. Org. Lett. 2001, 3, 1137-1140. Hewgley, J. B.; Stahl, S. S.; Kozlowski, M. C. J. Am. Chem. Soc. 2008, 130, 12232-12233. Enantioselective Oxidative Biaryl Coupling ! Iron(salan)-catalyzed process enables oxidative biaryl heterocoupling X = H, Y = Br: 52%, 89% ee X = Ph, Y = CO2Me: 70%, 90%ee X = Ph, Y = Ac: 65%, 88%ee H O (salan)FeIII FeIII(salan) O H X X H2O2 HO HO HO O2 Y (salan)FeIII X O O2•– O2•– HO + X X (salan)FeIV O (salan)FeIII HO O HO + Y Y Egami, H.; Matsumoto, K.; Oguma, T.; Kunisu, T.; Katsuki, T. J. Am. Chem. Soc. 2010, 132, 13633-13635. Interaction of Organic Radicals with Transition Metals CuII Ar1• H2C=CH2 Br CH3CH2• L PdII I CH3CH2X Br L PdIII I Et Ph Br Bn N Ph metal-radical interactions in asymmetric catalysis CH2 Et n-Hex FeII Ph !-carbonyl radicals R O O N Me Ar1 radical mechanism of oxidative addition oxidation of alkyl radicals Bn O CoII coenzyme vitamin B12 Interaction of Organic Radicals with Transition Metals CuII Ar1• H2C=CH2 Br CH3CH2• L PdII I CH3CH2X Br L PdIII I Et Ph Br Bn N Ph metal-radical interactions in asymmetric catalysis CH2 Et n-Hex FeII Ph !-carbonyl radicals R O O N Me Ar1 radical mechanism of oxidative addition oxidation of alkyl radicals Bn O CoII coenzyme vitamin B12 Coenzyme Vitamin B12 is a Source of Radicals ! Homolysis of cobalt-carbon bond generates carbon-centered radical capable of performing catalysis NH2 N N N N O 5'-deoxyadenosyl radical OH O H2N H Me Me H2N H O Me N Me H2N CH2 CoII NH2 O N H Me R CH2 CoIII N N O Me H BDE = 30 kcal/mol Me Me O Me O NH2 "latent radical reservoir" N NH Me HO Me O Co H R OH NH2 N H O H O P O O O H H OH Buckel, W.; Golding, B. T. Annu. Rev. Microbiol. 2006, 60, 27-49. Catalysis by Coenzyme Vitamin B12 ! Glutamate mutase converts (S)-glutamate to (2S,3S)-3-methylaspartate Ado CH2 CoIII CoII NH4+ -O C 2 Ado NH4+ CH2 CO2- CO2- -O C 2 CH3 (S)-glutamate (2S,3S)-3-methylaspartate NH4+ NH4+ Ado -O C 2 CO2 - -O C 2 CH3 CO2CH2 NH3+ -O C 2 CO2- glycyl radical Buckel, W.; Golding, B. T. Annu. Rev. Microbiol. 2006, 60, 27-49. Catalysis by Coenzyme Vitamin B12 ! Methylmalonyl CoA mutase converts L-methylmalonyl CoA to succinyl CoA Ado CH2 CoIII O O S O H CoII H O Ado CoA CH2 H succinyl CoA O O S O H CoA O L-methylmalonyl CoA O S O Ado CoA S O CH3 CoA O H O O O S CoA Banerjee, R.; Ragsdale, S. W. Annu. Rev. Biochem. 2003, 72, 209-247. Catalysis by Coenzyme Vitamin B12 ! D-ornithine aminomutase converts D-ornithine to (2R,4S)-2,4-diaminopentanoic acid Ado CH2 CoIII CoII NH2 R N R = pyridoxal phosphate Me Ado NH2 CH2 CO2- CO2N D-ornithine R 2,4-diaminopentanoic acid R NH2 NH2 N H2C Ado CO2- CH3 N R N CO2- R NH2 CO2Banerjee, R.; Ragsdale, S. W. Annu. Rev. Biochem. 2003, 72, 209-247. Chen, H.-P.; Wu, S.-H.; Lin, Y.-L.; Chen, C.-M. J. Biol. Chem. 2001, 276, 44744-44750. Interaction of Organic Radicals with Transition Metals CuII Ar1• H2C=CH2 Br CH3CH2• L PdII I CH3CH2X Br L PdIII I Et Ph Br Bn N Ph metal-radical interactions in asymmetric catalysis CH2 Et n-Hex FeII Ph !-carbonyl radicals R O O N Me Ar1 radical mechanism of oxidative addition oxidation of alkyl radicals Bn O CoII coenzyme vitamin B12
© Copyright 2026 Paperzz