Trigonometric Identities What s an identity? An equation that is true for all values of the variable for which both sides of the equation are defined. We have already established a bunch of identities from the last chapter. RECIPROCAL _ IDENTITIES 1 sin θ 1 sec θ = cosθ 1 cot θ = tan θ csc θ = QUOTIENT _ IDENTITIES sin θ tan θ = cosθ cosθ cot θ = sin θ Based on whether a function has origin or yaxis symmetry we have EVEN-ODD identities as well. EVEN − ODD _ IDENTITIES sin( −θ ) = − sin θ Origin symmetry csc( −θ ) = − csc θ EVEN − ODD _ IDENTITIES cos( −θ ) = cosθ Y-axis symmetry sec( −θ ) = sec θ EVEN − ODD _ IDENTITIES tan( −θ ) = − tan θ cot( −θ ) = − cot θ Origin symmetry Pythagorean Theorem from the unit circle yields the first Pythagorean identity. Pythagorean Identities Begin with the unit circle (cos! , sin! ) 1 sin θ cosθ cos θ + sin θ = 1 2 2 cos θ + sin θ = 1 2 2 To get the second identity, divide each term by cosine squared theta. cos θ sin θ 1 + = 2 2 2 cos θ cos θ cos θ 2 2 Identity #2 Simplify….. 1 + tan θ = sec θ 2 2 cos θ + sin θ = 1 2 2 To get the last Pythagorean Identity, divide each term by sine squared theta. cos2 θ sin 2 θ 1 + 2 = 2 2 sin θ sin θ sin θ Simplify…. cot θ + 1 = csc θ 2 2 Applying these identities to a situation. Use identities to find the exact values of the five other trig functions given…. 8 sin θ = _ & _ cosθ < 0 17 sin θ _ is_ positive cos ineθ _ is _ negative So, must _ be _ 2 ND _ QUADRANT _ angle cos2 θ + sin 2 θ = 1 cosθ = ± 1 − sin 2 θ Applying these identities to a situation. Use identities to find the exact values of the five other trig functions given…. 8 sin θ = _ & _ cosθ < 0 17 You are given that cosine is negative " 8% cos! = ! 1 ! $ ' # 17 & 2 " 8% cos! = ! 1 ! $ ' # 17 & 2 64 cosθ = − 1 − 289 225 −15 cosθ = − = 289 17 Find the other 3 trig functions by using reciprocal identities. " 8% cos! = ! 1 ! $ ' # 17 & 2 −15 cot θ = 8 −17 sec θ = 15 17 csc θ = 8 Simplifying a trig expression using the Pythagorean Identities Simplify: cot 2 t sin 2 t + sin 2 t Note: 2 cos t 2 cot t = sin 2 t Substitution : ! cos2 t $ 2 2 sin t + sin t #" sin 2 t &% Simplifying a trig expression using the Pythagorean Identities Simplify: cot 2 t sin 2 t + sin 2 t Simplify: cos t + sin t = 1 2 2 Simplify the following equation: Note: cos( −θ ) = cos(θ ) Note: csc 2 (θ ) − 1 = cot 2 (θ ) cot θ cos( −θ ) 2 csc θ − 1 cot θ cos(θ ) 2 csc θ − 1 cot θ cos(θ ) 2 cot θ Simplify the following equation: cot θ cos( −θ ) 2 csc θ − 1 Reduce cos(θ ) cot θ Note: cosθ cot θ = sin θ Simplify: cos(θ ) = sin θ cosθ sin θ Verify the following identity: (cos t )(1 + tan t ) = 1 2 Note: 1 + tan 2 t = sec 2 t Note: 1 sec t = 2 cos t 2 2 (cos t )(sec t ) = 1 2 ( 2 ! 1 $ cos t # =1 2 & " cos t % 1=1 2 ) Verify a trickier one: Note: cos t 1 + sin t = 1 − sin t cos t 1 − sin 2 t = cos2 t (1 + sin t ) cost = 1 + sin t (1 + sin t ) 1 ! sin t cost (1 + sin t ) cost = 1 + sin t 1 ! sin 2 t cost Verify a trickier one: cos t 1 + sin t = 1 − sin t cos t (1 + sin t ) cost = 1 + sin t 2 cos t cost (1 + sin t ) = 1 + sin t cost cost
© Copyright 2026 Paperzz