C4L1 Notes Quadratic Functions and Transformations The anatomy of a parabola: y y-intercept: axis of symmetry: zero: zero: x vertex: minimum value: domain (left to right): range (lowest to highest): Vertex form of the equation of a parabola: ሺܠሻ = Finding the vertex from vertex form: V: Rigid transformations of quadratic functions: Rigid transformations * vertical shift c units up: _______________ * vertical shift c units down: _______________ * horizontal shift c units right: _______________ * horizontal shift c units left: _______________ * reflection on the x-axis: _______________ * reflection on the y-axis: _______________ Non-rigid transformations _______________ * vertical stretch _______________ * horizontal stretch _______________ Identify the vertex and axis of symmetry of the equation of the parabola. 1. y = 2. f(x) = Identify the minimum/maximum value of each. 3. y = 4. f(x) = State the domain and range of the graph of the quadratic function. 5. y = 6. y = State the intercepts of the graph of the quadratic equation. 7. y = (x – )2 8. y = x2 – 9. y = x2 + 11. y = - (x – 10. y = (x + )2 + )2 – Sketch the graph of each quadratic function. State the steps that transform the parent graph. 12. y = (x – )2 13. f(x) = x2 – y y x )2 14. f(x) = (x + x 15. y = x2 + y y x x 16. y = (x – )2 – 17. f(x) = – (x + y )2 + y x )2 + 18. y = 2 (x – x 19. f(x) = (x + y )2 – y x x
© Copyright 2026 Paperzz