Logarthmic Function y=ax For x > 0, a > 0, and a≠1, y = logax, if and only if x = ay Sep 1710:38 AM Sep 1710:40 AM a) log2 32 = Common Logarithm: a logarithm function with base 10 b) log42= Log 10= c) log31= Log 1/4= d) log10 (1/100)= Sep 1710:42 AM Sep 1710:45 AM Natural Log: a logarithm function with base e Ln e = Ln 58= Feb 277:26 AM Feb 279:12 AM 1 Properties of Logarithms a) Solve for x: log2x=log23 1. loga1=0 b) Solve for x: log44=x 2. logaa=1 c) Simplify: log55x 3. logaax=x d) Simplify: 7log714 4. If logax = logay then x=y Sep 1710:47 AM Properties of the graph of the logarithmic function come directly from the properties of the graph of the exponential function and the inverse relationship. Graphs of Exponential Functions: Sep 1710:50 AM f(x)= log2x Graphs of Logarithmic Functions: 1) The domain is ( , ). 1) The domain is (0 , ). 2) The range is (0, ). 2) The range is ( , ). 3) The yintercept is (0, 1). 3) The xintercept is (1, 0). 4) y = 0 is a horizontal asymptote. 5) f is increasing if a > 1. 4) x = 0 is a vertical asymptote. 5) f is increasing if a > 0. 6) f is decreasing if 0 < a < 1 Feb 267:07 AM Graph: f(x) = log4(x-3) Sep 1710:56 AM Sep 1710:55 AM Graph: f(x)= log2(-x) Sep 1812:55 PM 2 Graph: h(x) = -log6(x+2) Sep 1812:56 PM Graph: g(x) = log10(x-1) + 4 Sep 1812:56 PM Graph: f(x)= log2(-x) Sep 1812:55 PM 3
© Copyright 2026 Paperzz