Critical Plane Analysis of Fatigue Crack Nucleation Under Tension, Shear, and Compression W. V. Mars, Ph.D, P.E. Endurica LLC email: [email protected], 1219 West Main Cross, Suite 201, Findlay, Ohio 45840, USA Presented at the Fall 182nd Technical Meeting of the Rubber Division of the American Chemical Society, Inc. Cincinatti, OH October 9-11, 2012 Paper #93 www.endurica.com Agenda • Context • Purpose • Material Behavior – Stress-Strain – Fatigue Crack Growth – Microstructure / fatigue precursors • Mechanics of Tension, Shear and Compression • Critical plane analysis of crack nucleation • Lessons learned www.endurica.com Body with crack precursors N=0 www.endurica.com Body with crack precursors N=1000 www.endurica.com Purpose • How can we estimate fatigue behavior of a rubber part under practical loading scenarios? • Subject cases: – Tension – Shear – Compression www.endurica.com Loading Cases / Duty Cycle Definitions a cos(t ) m Simple Tension 1 F 0 0 0 (1 ) 1/ 2 0 0 1 / 2 (1 ) 0 a m 0.25, 0.375, 0.50, 0.75,1.00 Simple Shear 1 (1 ) (1 ) F 0 1 0 0 www.endurica.com 1 Simple Compression 0 0 1 1 (1 ) 2 F 0 0 0 1 0 0 1 0 Applied Duty Cycles in Terms of Nominal Strain 2 Simple Tension Simple Shear 1.5 Engineering Strain Simple Compression 1 0.5 0 0 1 2 3 4 5 6 -0.5 -1 time 100% peak maximum principal strain www.endurica.com 7 Ogden Hyperelastic Law n W i 1 2i 2 i i 1 2 i 3 i 3 i=1 i=2 i=3 µ, MPa 1.0 0.1 0.02 α 2.5 -3.5 8 www.endurica.com Stress-Strain Behavior Simple Tension Simple Shear 3 Engineering Stress, MPa 2.5 2 1.5 1 0.5 0 0 -0.5 0.5 1 Engineering Strain 1.5 0 -0.8 -0.6 -0.4 -0.2 2.5 0 -10 Engineering Stress, MPa Engineering Shear Stress, MPa 3 Simple Compression 2 1.5 1 0.5 -20 -30 -40 -50 0 0 0.5 1 1.5 Engineering Shear Strain www.endurica.com 2 Engineering Stress, MPa -60 Applied Duty Cycles in Terms of Nominal Stress 60 Simple Tension Simple Shear 4 40 Tensile Stress, MPa Simple Compression 2 20 0 0 0 1 2 3 4 5 6 7 -2 -20 -4 -40 -6 time 100% peak maximum principal strain www.endurica.com -60 Compressive Stress, MPa 6 Applied Duty Cycles in Terms of Strain Energy Density 6 Strain Energy Density, mJ/mm^3 Simple Tension 5 Simple Shear Simple Compression 4 3 2 1 0 0 1 2 3 time 4 5 6 100% peak maximum principal strain www.endurica.com 7 Fatigue Crack Growth Rate Law rc T r rc Tc F Tc F = 2, Tc = 30 kJ/m2, rc = 1 x 10-3 mm/cyc www.endurica.com F Flaw Size and Damage Law N cf c0 dc r (T ) 3 c0 50 10 mm c f 1 mm www.endurica.com Critical Plane Analysis r ( , ) ij (t ) ε Wc ( , , t ) r T σ dε r dc f (T , R) dN 0 T2 ( , , c) 2 Wc c cf N f ( , ) c0 1 dc f (T , R) 1 0.8 1 min , min , N f ,min 0.6 0.5 0.4 0 0.2 -0.5 0 1 www.endurica.com 0.8 0.6 -1 0.4 0.2 0 -0.2 -0.4 -0.6 -0.8 -1 Cracking Energy Density d dWc d www.endurica.com W. V. Mars, Rubber Chemistry and Technology, Vol. 75, pp. 1-18, 2002. Crack Closure d dWc ( n t ) d 0 www.endurica.com W. V. Mars, Rubber Chemistry and Technology, Vol. 75, pp. 1-18, 2002. Critical Plane Analysis Google Scholar Publications 14 12 Search term: rubber “critical plane” 10 ~30% growth per year in rate of publications 8 6 Endurica LLC founded 4 2 0 1998 2000 2002 2004 2006 2008 2010 2012 Year 2014 Endurica fatigue solver technology is available commercially as W. V. Mars, Rubber Chem. Technol., 75, 1 (2002). W. V. Mars, A. Fatemi, J Mater Sci, 41, 7324 (2006). W. V. Mars, A. Fatemi, Rubber Chem. Technol., 79, 589 (2006). N Saintier, G Cailletaud, R Piques, International Journal of Fatigue, 28, 61 (2006) N. Saintier, G. Cailletaud, R. Piques, International Journal of Fatigue, 28, 530 (2006) R. J. Harbour, A. Fatemi, W. V. Mars, Int J Fatigue, 30, 1231 (2008). A. Andriyana, N. Saintier, E. Verron, Int. J. Fatigue, 32, 1627 (2010). B. G. Ayoub, M. Naït-Abdelaziz, F. Zaïri, J.M. Gloaguen, P. Charrier, Mechanics of Materials, 52, 87 (2012) www.endurica.com Critical Plane Analysis Computed Life, cycles 1.E+06 Simple Tension Simple Shear Simple Compression 1.E+05 0 45 90 Plane Orientation www.endurica.com 135 180 Damage Sphere Simple Tension Simple Shear 9 Simple Compression 9 9 8.5 8.5 -1 1 8.5 -0.8 -0.6 0.5 8 7.5 0 -0.2 -1 7.5 7.5 -0.5 0 7 7 7 0.2 -0.5 8 8 -0.4 6.5 0 0.4 6.5 1 6 0 0.6 6 0.8 -1 5.5 1 0.5 0 -0.5 -1 0.5 6.5 6 5.5 1 -1 -0.5 0 0.5 1 5.5 -1 1 1 www.endurica.com 0.5 0 -0.5 -1 Computed CED-Life Cracking Energy Density, mJ/mm^3 1.E+02 Tension Shear Compression 1.E+01 1.E+00 1.E-01 1.E+03 1.E+04 1.E+05 Life, cycles www.endurica.com 1.E+06 1.E+07 Computed Strain-Life Curve 5.E+00 Nominal Strain Tension Shear Compression 5.E-01 1.E+03 1.E+04 1.E+05 Life, cycles www.endurica.com 1.E+06 1.E+07 Computed SED-Life Strain Energy Density, mJ/mm^3 1.E+02 Tension Shear Compression 1.E+01 1.E+00 1.E-01 1.E+03 1.E+04 1.E+05 Life, cycles www.endurica.com 1.E+06 1.E+07 Computed Stress-Life Nominal Stress, MPa 1.E+04 Tension Shear Compression 1.E+03 1.E+02 1.E+01 1.E+00 1.E+03 1.E+04 1.E+05 Life, cycles www.endurica.com 1.E+06 1.E+07 Conclusion • Critical plane analysis = considering all possible failure planes – Identify the worst plane – Estimate local experience of crack precursor • Simple loads with tensile max prin stress = crack orientation normal to prin stress • Critical plane analysis needed whenever – No principal stress is tensile (ie crack closure) – Nonrelaxing loads – Loads with variable principal directions • Standard parameters governing fatigue behavior – Stress-strain law – FCG law – Precursor size • X-N curves differ depending on mode of deformation, but can be calculated using numerical analysis www.endurica.com The Future • Duty cycles modeled via FEA • Variable amplitude, variable mode loading • Characterization and modeling of fatigue for product development www.endurica.com Abstract • When fatigue cracks develop from microscopic precursors in rubber, they tend to do so on specific planes. The orientation and loading experiences of such planes under the action of a given mechanical duty cycle directly govern the rate at which associated cracks develop, and ultimately the fatigue life. Here we demonstrate the consequences of this principle for three loading scenarios that are common in elastomer components: simple tension, simple shear, and simple compression. For each case, we first identify a prospective failure plane, we consider the associated local mechanical duty cycle, and we estimate the rate of damage accumulation for the prospective plane. After considering all possible planes, we then identify the most critical plane(s) as the one (or several) plane(s) that has(ve) the maximum rate of damage accumulation. The analysis illuminates how fatigue behavior can be expected to differ between tension, shear, and compression, and how these differences derive from the same fundamental material behaviors. • Keywords: Fatigue, Failure, Mechanics, Multiaxial, Critical Plane Analysis www.endurica.com
© Copyright 2026 Paperzz