Name: ________________________ Class: ___________________ Date: __________ Quadratics Review Multiple Choice ____ 2 1. How is y = (x − 3) different from y = x2? a. c. f(x) translated to the right 3 unit(s) f(x) translated up 3 unit(s) d. b. f(x) translated to the left 3 unit(s) f(x) translated down 3 unit(s) ____ ____ 2. What is the y-intercept of y = 3x2 + 4x + 1? a. 3 b. 4 2 1 3. Identify the vertex and axis of symmetry for y = 2x 2 + 4x − 10. a. b. ____ c. d. vertex: ( –1, – 6) axis of symmetry: x = −1 vertex: ( –1, – 6) axis of symmetry: x = − 6 c. d. vertex: ( 1, – 6) axis of symmetry: x = − 6 vertex: ( –1, 6) axis of symmetry: y = −1 4. Solve x 2 − 8x + 16 = 16 by completing the square. a. –8, 8 c. 0, 8 b. –8, 0 d. 0, 0 1 ID: A Name: ________________________ ____ 5. How is y = (x + 3) 2 + 4 different from y = x2? a. ID: A c. f(x) translated down 4 unit(s) and translated to the left 3 unit(s) f(x) translated down 4 unit(s) and translated to the right 3 unit(s) d. b. f(x) translated up 4 unit(s) and translated to the left 3 unit(s). f(x) translated up 4 unit(s) and translated to the right 3 unit(s) ____ 2 6. Identify the vertex and the axis of symmetry of the graph of the function y = 2(x + 2) − 4. a. vertex: (–2, 4); axis of symmetry: x = −2 b. vertex: (2, –4); axis of symmetry: x = 2 c. vertex: (–2, –4); axis of symmetry: x = −2 d. vertex: (2, 4); axis of symmetry: x = 2 ____ 7. Write y = x 2 − 2x + 8 in vertex form. a. b. y = (x + 1) 2 + 7 y = (x + 1) 2 − 7 c. d. 2 y = (x − 1) 2 + 7 y = (x − 1) 2 − 7 Name: ________________________ ____ 8. Solve x 2 + 11x = −28 by factoring. a. –4, –7 b. –4, 7 ID: A c. d. 4, 7 4, –7 9. Solve x 2 − 12x + 32 = 0 by factoring. a. –4, 8 c. 4, 8 b. 4, –8 d. –4, –8 ____ 10. What is the maximum or minimum value of y = -x2 + 8x + 3? a. maximum; y = 19 c. minimum; y = 19 b. minimum; y = 4 d. maximum; y = 4 ____ 11. Write a quadratic equations with the roots -1/3 and 4. a. 3x2 - 11x - 4 = 0 c. x2 + 12x - 4 = 0 2 b. 3x - x - 4 = 0 d. 3x2 - 9x - 12 = 0 ____ ____ 12. Solve x 2 − 4x − 5 = 0 by graphing. a. c. 1, –5 b. –1, 5 d. 1, –5 –1, 5 ____ 13. Describe the types of solutions for x2 + 3x + 4 = 0. (Hint: Find the value of the discriminant.) a. one rational root c. two complex roots b. two irrational roots d. two rational roots ____ 14. The product of two consecutive numbers is 210. What are these two numbers? a. 11, 12 c. 10, 11 b. 2, 105 d. 5, 42 3 Name: ________________________ ID: A ____ 15. Use the Quadratic Formula to solve 2x 2 + x − 4 = 0 a. 1 − ± 2 33 4 c. 1 − ± 4 33 4 b. −4 ± 66 4 d. 1 − ± 2 33 2 ____ 16. Use the Quadratic Formula to solve −x 2 + 6x − 5 = 0 a. −5, −1 c. −5, 11 b. 1, 5 d. 2, 10 ____ 17. Solve x2 + 14x + 49 = 64 by completing the square. a. 7, 8 c. 1 b. 1, -15 d. -1, 15 2 ____ 18. Solve x + 6x + 13 = 0 by completing the square. a. -3 + 2i, - 3 - 2i c. -1, -5 b. -3 + 4i, -3 - 4i d. 3 + 2i, 3 - 2i ____ 19. Solve x 2 + 8x + 15 = 0 by graphing. a. c. –5, –3 5, 3 b. d. 5, 3 –5, –3 4 ID: A Quadratics Review Answer Section MULTIPLE CHOICE 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. C D A C B C C A C A A C C C C B B A C 1
© Copyright 2025 Paperzz