`KUKATPALL Y CENTRE Total No. of Questions - 24 Reg. Total No. of Printed Pages - 16 No. Part - III MATHEMATICS, Paper-I (A) (English Version) Time : 3 Hours] [Max. Marks : 75 SECTION - A I. 1. 10 2 = 20 M Very Short Answer Type questions: (A) Find the domains of the following real valued functions: a) f x 1 b) f x 2 x 1 x 6x x 2 5 c) f x x 2 1 1 d) f x x 2 3x 2 1 e) f x 1 x x f) f x log x x x2 x 2 3 x g) f x log 10 x h) f x x 2 1 log 10 1 x 3 x 3x x 1 j) f x log 2 x (B) Find the ranges of the following real valued functions: i) f x a) log 4 x 2 b) x x c) sin x 2 1 x d) x2 4 x2 e) 9 x2 C) If A 0, , , , and f : A B is a surjection defined by f x cos x then find B . 6 4 3 2 If A 2, 1,0,1, 2 and f : A B is a surjection defined by f x x 2 x 1 , then find B . 1 2 D) If f : R \ 0 R is defined by f x x then prove that f x f x 2 f 1 . x 1 1 If f : R 0 R is defined by f x x 3 3 , then show that f x f 0 x x If f : R R is defined by f x 1 x2 1 x2 , then show that f tan cos 2 . If f : R 1 R is defined by f x log 2 x 1 x 2 f x . , then show that f 1 x 2 1 x FIITJEE KUKATPALLY CENTRE: # 22-97, Plot No.1, Opp. Patel Kunta Huda Park, Vijaynagar Colony, Hyderabad - 500 072. Ph.: 040-64601123 Regd. Off.: 29A, ICES House, Kalu Sarai, Sarvapriya Vihar, New Delhi - 110 016. Ph: 011 - 2651 5949, 2656 9493, Fax: 2651 3942 2. A) If f : R R and g : R R are defined by f x 2 x 2 3 and g x 3x 2 , then find i) fogx , ii) gof x , iii) fof o , iv) go fof 3 . If f : R R , g : R R are defined by f x 3x 1, g x x 2 1 , then find i) fof x 2 1 ii) fog 2 iii) gof 2 a 3 If f : 4, 5 ,5,6 ,6, 4 and g : 4, 4 ,6,5 ,8,5 then find a) f 4 b) fg c) d) f 2 f x1 x 1 then find fofof x and fofofof x . x 1 B) Find the inverse of the following functions: a) If a , b R , f : R R defined by f x ax b a 0 If f x b) f : R 0, defined by f x 5x C) If f x x1 , x 1 , show that fof 1 x x x1 c) f : 0, R defined by f x log 2 x . Determine whether the following functions are even or odd. e x 1 a) f x x b) f x log x x 2 1 e x 1 Prove that the real valued function f x x x e 1 x 1 is an even function on R \ 0 . 2 3x 3x , then show that f x y f x y 2 f x f y . 2 4x If the function f : R R defined by f x , then show that f 1 x 1 f x . 4x 2 If the function f : R R defined by f x 3. 3 2y 8 5 2 a) If zx 2 a 4 then find the values of x, y, z and a. 2 6 1 3 2 0 b) Find the trace of 2 1 5 5 1 c) If A 13 24 , B 73 82 and 2X A B then find X. 5 d) Find the products of i) 1 4 2 1 3 1 ii) 26 12 34 2 1 e) If A 0i 0i , find A 2 . f) If A 21 k4 and A 2 O , then find the value of k. g) Define Trace of matrix and give an example. h) Define symmetric and skew-symetric matrix and give an example. i) A certain bookshop has 10 dozen chemistry books, 8 dozen physics books, 10 dozen economics books. Their selling prices are Rs. 80, Rs. 60 and Rs. 40 respectively. Find the total amount the bookshop will receive by selling all the books, using matrix algebra. FIITJEE KUKATPALLY CENTRE: # 22-97, Plot No.1, Opp. Patel Kunta Huda Park, Vijaynagar Colony, Hyderabad - 500 072. Ph.: 040-64601123 Regd. Off.: 29A, ICES House, Kalu Sarai, Sarvapriya Vihar, New Delhi - 110 016. Ph: 011 - 2651 5949, 2656 9493, Fax: 2651 3942 2 4 then find A A' and AA' . j) If A 5 3 k) Construct 3 2 matrix whose elements are defined by aij 4. 1 i 3j 2 3 0 0 a) If A 0 3 0 , then find A 4 . 0 0 3 sin b) If A cos , show that AA’ = A’A=I. sin cos 1 2 1 0 5 3 4 0 and B 0 2 5 then find 3A-4B’. 3 1 5 1 2 0 c)If A 2 7 d) If A 1 5 2 1 2 2 and B 4 2 then find AB’ and BA’. 1 0 3 1 0 0 3 4 and det A = 45 find x. 5 6 x e) If A 2 f) Define singular matrix and give an example. g) Define rank of a matrix. 1 4 1 0 0 1 2 h) Find the Rank of the Matrix 2 3 5. A) ABCDE is a pentagon. If the sum of the vectors AB, AE, BC, DC, ED and AC is AC , then find the value of . B) If the position vectors of the point A, B and C are 2i j k , 4i 2 j 2 k and 6i 3 j 13k respectively and AB λAC , then find the value of . C) If OA i j k , AB 3i 2 j k , BC i 2 j 2 k and CD 2i j 3k , then find the vector OD. D) a 2 i 5 j k and b 4i mj nk are collinear vectors, then find m and n . E) Let a 2 i 4 j 5 k , b i j k and c j 2 k . Find the unit vector in the opposite direction of a b c . F) If , and be the angles made by the vectors 3i 6 j 2 k with the positive directions of the coordinates axes, then find cos , cos and cos . G) Find the angles made by the straight line passing through the points 1, 3, 2 and 3, 5,1 with the coordinate axes. 6. A) Find the vector equation of the line passing through the point 2i 3 j k and parallel to the vector 4i 2 j 3k . B) OABC is a parallelogram. If OA= a and OC c , find the vector equation of the side BC. C) If a , b , c are the position vectors of the vertices A, B and C respectively of ABC , then find the vector equation of the median through the vertex A. D) Find the vector equation of the line joining the points 2i j 3k and 4i 3 j k . E) Find the vector equation of plane passing through the points i 2 j 5 k , 5 j k , and 3i 5 j . F) Find the vector equation of the plane passing through the points 0,0,0 , 0,5,0 , and 2,0,1 . FIITJEE KUKATPALLY CENTRE: # 22-97, Plot No.1, Opp. Patel Kunta Huda Park, Vijaynagar Colony, Hyderabad - 500 072. Ph.: 040-64601123 Regd. Off.: 29A, ICES House, Kalu Sarai, Sarvapriya Vihar, New Delhi - 110 016. Ph: 011 - 2651 5949, 2656 9493, Fax: 2651 3942 7. A) If a i 2 j 3 k and b 3i j 2 k , then show that a b and a b are perpendicular to each other. B) Let a and b be non-zero, non-collinear vectors. If a b a b , then find the angle between a and b . C) If a 11, b 23 and a b 30, then find the angle between the vectors a , b and a b . D) If a i j k and b 2i 3 j k , then find the projection vector of b on a and its magnitude. E) If P , Q , R and S are points whose position vectors are i k , i 2 j , 2i 3 k and 3i 2 j k respectively, then find the component of RS and PQ . F) Find the angle between the planes r.2 i j 2 k and r.3i 6 j k 4. 1 e1 e2 sin , then find . 2 H) If a 2 i 2 j 3 k , b 3i j 2 k , then find the angle between 2a b and a 2b . G) Let e1 and e2 be unit vectors containing angle . If I) Find the area of the parallelogram for which the vectors a 2i 3 j and b 3i k are adjacent sides. J) If a i 2 j 3 k and b 3i 5 j k are two sides of a triangle, then find its area. K) Let a 2i j k and b 3i 4 j k . If is the angle between a and b , then find sin . L) Find the area of the triangle whose vertices are A1,2, 3 , B2,3,1 and C 3,1,2 . M) Show that i a i j a j k k a 2 a for any vector a. N) Prove that for any three vectors a , b , c b c c a a b 2 abc . 2 O) For any three vectors, a , b , c , prove that b c c a a b abc . 8. A) Prove that cot B) 2 3 7 .cot .cot ....cot 1 16 16 16 16 If 3sin 4 cos 5, then find the value of 4 sin 3 cos . C) If cos sin 2 cos , prove that cos sin 2 sin 2 D) Prove that tan cot sec 2 cos ec 2 sec2 .cos ec 2 . E) If tan 20 o , then show that F) Prove that tan 160 o tan 110 o 1 tan 160 o.tan 110 o 1 2 . 2 tan sec 1 1 sin . tan sec 1 cos G) Prove that 1 cot cos ec 1 tan sec 2 H) Prove that 3sin cos 4 6 sin cos 2 4 sin 6 cos6 13 I) Prove that sin cos ec 2 cos sec 2 tan 2 cot 2 7 J) Prove that cot 3 5 7 9 .cot .cot .cot .cot 1 20 20 20 20 20 FIITJEE KUKATPALLY CENTRE: # 22-97, Plot No.1, Opp. Patel Kunta Huda Park, Vijaynagar Colony, Hyderabad - 500 072. Ph.: 040-64601123 Regd. Off.: 29A, ICES House, Kalu Sarai, Sarvapriya Vihar, New Delhi - 110 016. Ph: 011 - 2651 5949, 2656 9493, Fax: 2651 3942 9. A) Draw the graph of y cos 2 x in 0, . B) Draw the graph of y sin 2 x in , . C) Find the period of the function defined by f x tan x 4x 9x ... n 2 x D) Find the periods of the functions: 4x 9 b) f x cos 5 a) f x tan 5x c) f x sin x E) 1 o 1 o 3 1 Prove that sin 2 52 sin 2 22 2 2 4 2 F) Prove that tan 70o tan 20o 2 tan 50 o G) If A B 45o , then prove that i) 1 tan A1 tan B 2 H) Prove that cos 9o sin 9 o o cos9 sin 9 o ii) cot A 1cot B 1 2 cot 36 o . 4 I) Draw the graph of the tan x between 0 and J) Draw the graph of the cos 2x in the interval 0, . K) Find the extreme values of 5 cos x 3 cos x 8 over R. 3 L) Find the range of ii) 13 cos x 3 3 sin x 4 i) 7 cos x 24 sin x 5 M) Find the minimum and maximum values of i) 3 cos x 4 sin x ii) sin 2 x cos 2 x N) If is not an odd multiple of O) Prove that P) 1 sin 10 o 3 cos10o 1 sin 2 cos 2 and if tan 1 , then show that tan . 2 1 sin 2 cos 2 4 Prove that 4 cos 66 o sin 84o 3 15 o o Q) Prove that cos cos 120 cos 240 0 10. A) Prove that, for any x R , sinh 3x 3sinh x 4 sinh 3 x FIITJEE KUKATPALLY CENTRE: # 22-97, Plot No.1, Opp. Patel Kunta Huda Park, Vijaynagar Colony, Hyderabad - 500 072. Ph.: 040-64601123 Regd. Off.: 29A, ICES House, Kalu Sarai, Sarvapriya Vihar, New Delhi - 110 016. Ph: 011 - 2651 5949, 2656 9493, Fax: 2651 3942 B) If cosh x 5 , find the values of (i) cosh 2 x and (ii) sinh 2x 2 C) If sinh x 5, show that x log e D) 1 1 Show that tanh1 log 3 2 2 e E) If sinh x F) Prove that 5 26 3 , find cosh 2x and sinh 2x 4 n (i) cosh x sinh x cosh nx sinh nx , for any n R n (ii) cosh x sinh x cosh nx sinh nx , for any n R G) If sinh x 3 then show that x log e 3 10 SECTION – B II. 11. 5 4 = 20 M Short Answer Type questions: (i) Attempt any five questions (ii) Each question carries four marks cos n sin n sin n a) If A cos then show that for all the positive integers n, A sin n cos n sin cos b) A trust fund has to invest Rs. 30,000 in two different types of bonds. The first bond pays 5% interest per year, and the second bond pays 7% interest per year. Using matrix multiplication, determine how to divide Rs. 30000 among the two types of bonds if the trust fund must obtain an annual total interest of a) Rs. 1800 b) Rs. 2000 1 2 2 c) If A 2 1 2 then show that A 2 4A 5I 0 2 2 1 1 2n 4n 4 n d) If A 31 then for any integer n 1 show that A n 1 2n 1 1 2 2 e) If 3A 2 1 2 then show that A1 A ' . 2 2 1 3 3 4 f) If A 2 3 4 then show that A1 A 3 . 0 1 1 g) Two factories I and II produce three varieties of pens namely Gel, Ball and Ink pens. The sale in rupees of these varieties of pens by both the factories in the month of September and October in a year are given by the following matrices A and B. September sales (in Rupees) Gel Ball Ink 1000 2000 3000 Factory I A 5000 3000 1000 Factory II FIITJEE KUKATPALLY CENTRE: # 22-97, Plot No.1, Opp. Patel Kunta Huda Park, Vijaynagar Colony, Hyderabad - 500 072. Ph.: 040-64601123 Regd. Off.: 29A, ICES House, Kalu Sarai, Sarvapriya Vihar, New Delhi - 110 016. Ph: 011 - 2651 5949, 2656 9493, Fax: 2651 3942 October sales (in Rupees) Gel Ball Ink 500 1000 600 Factory I A 2000 1000 1000 Factory II i) Find the combined sales in September and October for each factory in each variety. ii) Find the decrease in sales from September to October. b c 1 bc h) i) Show that ca c a 1 a bb c c a ab a b 1 b c c a a b ii) Show that a b b c c a a 3 b 3 c 3 3abc a c yz x x y zx y z z xy iii) Show that a a2 b 1 a3 iv) If b b 2 c c2 4xyz a a2 1 1 b 3 0 and b b 2 1 0 then show that abc 1 1 c3 1 c c2 v) without expanding the determinant, prove that a a2 i) b b 2 c c2 1 bc bc 1 a2 a3 ax by cz 2 3 2 2 2 ca 1 b ab 1 c2 bc b ii) x 1 c3 y 1 a b c z x y z 1 yz zx xy 1 a a2 iii) 1 ca c a 1 b b 2 1 ab a b 1 c c2 12. A) Let ABCDEF be a regular hexagon with centre ‘O’. Show that AB+AC+AD+AE+AF=3AD=6AO. B) In ABC , if ‘O’ is the circumcentre and H is the orthocentre, then show that i) OA + OB + OC = OH ii) HA + HB + HC = 2 HO C) Is the triangle formed by the vectors 3i 5 j 2 k , 2i 3 j 5k and 5i 2 j 3 k equilateral? D) If a b c d , b c d a and a , b , c are non-coplanar vectors, then show that abc d 0 . E) a , b , c are non-coplanar vectors. Prove the following four points are coplanar. a) a 4b 3c , 3a 2b 5c , 3a 8b 5c , 3a 2b c . b) 6 a 2b c , 2 a b 3c , a 2b 4c , 12 a b 3c F) Find the equation of the line parallel to the vector 2i j 2 k , and which passes through the point A whose position vectors is 3i j k . If P is a point on this line such that AP 15 , find the position vector of P . FIITJEE KUKATPALLY CENTRE: # 22-97, Plot No.1, Opp. Patel Kunta Huda Park, Vijaynagar Colony, Hyderabad - 500 072. Ph.: 040-64601123 Regd. Off.: 29A, ICES House, Kalu Sarai, Sarvapriya Vihar, New Delhi - 110 016. Ph: 011 - 2651 5949, 2656 9493, Fax: 2651 3942 13. A) If a b c 0 , a 3, b 5 and c 7 , then find the angle between a and b . If a 2, b 3 and c 4 and each of a , b , c is perpendicular to the sum of the other two vectors, then find the magnitude of a b c . C) G is the centroid of ABC and a , b , c are the lengths of sides BC , CA and AB respectively. B) Prove that a 2 b 2 c 2 3 OA2 OB2 OC 2 9 OG2 where 'O ' is any point. 2 2 2 D) For any two vectors a and b , a b a.ab.b a.b a 2 b 2 a.b E) Let a and b be vectors, satisfying a b 5 and a , b 45o . Find the area of the triangle having a 2b and 3a 2b as two of its sides. F) Find the vector having magnitude 6 units and perpendicular to both 2i k and 3 j i k . G) Find unit vector perpendicular to the plane passing through the points 1,2,3 , 2, 1,1 and 1,2, 4 . H) If a , b and c represent the vertices A, B and C respectively of ABC , then prove that a b b c c a is twice the area of ABC . I) If A, B, C and D are four points, then show that ABCD BC AD CA BD is four times the area of ABC . J) For any two vectors a and b , show that 1 a 2 1 b 2 1 a.b 2 a b a b 2 . K) Let a , b , c be three vectors. Then i) a b c a.c b b.c a L) ii) a b c a.c b a.bc If a i 2 j 3 k , b 2i j k and c i 3 j 2 k . Find the a b c M) a , b , c are non-zero vectors and a is perpendicular to both b and c . If a 2, b 3, c 4 2 and b , c , then find a b c 3 N) If b c d c a d a b d a b c , then show that the points with position vectors a , b , c and d are coplanar. O) If a , b , c are the position vectors of the points A, B and C respectively, then prove that the vector a b b c c a is perpendicular to the plane of ABC . 14. A) If sec tan B) 2 , find the value of sin and determine the quadrant in which lies. 3 Find the value of 2 sin 6 cos6 3 sin 4 cos 4 C) If cos 0 , tan sin m and tan sin n , then show that m2 n2 4 mn D) Eliminate from the following: E) i) x a cos 3 , y b sin 3 ii) x a cos 4 , y b sin 4 iii) x a sec tan , y b sec tan iv) x cot tan and y sec cos Let ABC be a triangle such that cot A cot B cot C 3 , then prove that ABC is an equilateral triangle. FIITJEE KUKATPALLY CENTRE: # 22-97, Plot No.1, Opp. Patel Kunta Huda Park, Vijaynagar Colony, Hyderabad - 500 072. Ph.: 040-64601123 Regd. Off.: 29A, ICES House, Kalu Sarai, Sarvapriya Vihar, New Delhi - 110 016. Ph: 011 - 2651 5949, 2656 9493, Fax: 2651 3942 F) Find the maximum and minimum values of ii) cos x 2 2 sin x 3 3 3 i) 3sin x 4 cos x G) If A is not an integral multiple of , prove that 2 a) tan A cot A 2 cos ec 2 A b) cot A tan A 2 cot 2 A H) If is not an integral multiple o f I) , prove that tan 2 tan 2 4 tan 4 8 cot 8 cot 2 For A R , prove that 1 a) sin A.sin 60 A sin 60 A sin 3 A 4 1 b) cos A.cos 60 A cos 60 A cos 3 A and hence deduce that 4 c) sin 20 o sin 40o sin 60o sin 80o J) 2 3 4 1 d) cos cos cos cos 9 9 9 9 16 3 16 , prove that tan A.tan 60 A.tan 60 A tan 3 A and 2 hence find the value of tan 6 o tan 42 o tan 66o tan 78 o . If 3A is not an odd multiple of K) If , are the solutions of the equation a cos b sin c ( a , b , c are non-zero numbers) then show that i) sin sin L) 2bc ii) sin .sin a2 b2 c 2 a2 a2 b2 If A is not an integral multiple of , prove that cos A.cos 2 A.cos 4 A.cos8 A hence deduce that cos M) If sin x sin y a) tan xy 3 2 4 2 4 8 16 1 .cos .cos .cos 15 15 15 15 16 sin 16 A and 16 sin A 1 1 and cos x cos y , then show that 4 3 ii) cot x y 7 24 N) Prove that 4 cos12 o cos 48o cos72 o cos 36o O) If cos x cos y P) xy xy 4 2 and cos x cos y , find the value of 14 tan 5 cot 5 7 2 2 If sec sec 2 sec and cos 1 , then show that cos 2 cos . 2 2 4 Q) If x , y , z are non zero real numbers and if x cos y cos z cos for some 3 3 R , then show that xy yz zx 0 R) If a cos b cos , cos 0 , then prove that a b tan a b cot . FIITJEE KUKATPALLY CENTRE: # 22-97, Plot No.1, Opp. Patel Kunta Huda Park, Vijaynagar Colony, Hyderabad - 500 072. Ph.: 040-64601123 Regd. Off.: 29A, ICES House, Kalu Sarai, Sarvapriya Vihar, New Delhi - 110 016. Ph: 011 - 2651 5949, 2656 9493, Fax: 2651 3942 S) Prove that sin 4 T) Prove cos 3 5 7 3 sin 4 sin 4 sin 4 8 8 8 8 2 2 3 4 5 1 .cos .cos .cos .cos 11 11 11 11 11 32 3 7 9 1 U) Prove that 1 cos 1 cos 1 cos 1 cos 10 10 10 10 16 15. A) If x is acute and sin x 10 o cos 3x 68o find x . B) Solve 7 sin 2 3 cos 2 4 C) Solve 2 cos 2 3 sin 1 0 2 D) Find all values of x in , satisfying the equation 81coscos x.... 4 3 E) Solve tan 3 cot 5sec F) Solve 1 sin 2 3sin cos G) Solve 2 sin x cos x 3 H) Solve 4 sin x sin 2 x sin 4 x sin 3x I) If 0 , solve cos .cos 2 .cos 3 J) Solve sin 2 x cos 2 x sin x cos x K) Find the general solution of tan x L) 1 4 1 2 ,sec x 3 3 Solve the following equations and write general solution. ii) 4 cos 2 3 2 3 1 cos i) 6 tan 2 x 2 cos 2 x cos 2 x 2 iii) 1 sin 2 x sin 3x cos 3x iv) 2 sin 2 x sin 2 2 x 2 1 M) If tan cos cot sin , then prove that cos 4 2 2 N) Find the common roots of the equations cos 2 x sin 2 x cot x and 2 cos 2 x cos 2 2 x 1 . O) Solve the equation P) If tan x tan x 6 cos x 7 sin 2 x cos x 0 . 1 and x 0,2 , find the values of x . cos x 16. A) Prove that sin1 4 7 117 sin1 sin1 5 25 125 FIITJEE KUKATPALLY CENTRE: # 22-97, Plot No.1, Opp. Patel Kunta Huda Park, Vijaynagar Colony, Hyderabad - 500 072. Ph.: 040-64601123 Regd. Off.: 29A, ICES House, Kalu Sarai, Sarvapriya Vihar, New Delhi - 110 016. Ph: 011 - 2651 5949, 2656 9493, Fax: 2651 3942 B) Prove that sin1 16 4 5 sin1 sin1 25 2 5 13 41 4 4 4 1 D) Prove that sin1 2 tan1 5 3 2 1 1 E) Prove that cos 2 tan1 sin 4 tan1 7 3 C) Prove that cot1 9 cos ec1 F) If sin1 x sin1 y sin 1 z , then prove that x 4 y 4 z 4 4 x 2 y 2 z 2 2 x 2 y 2 y 2 z2 z 2 x 2 p q p2 2 pq q2 cos1 , then prove that .cos sin 2 . a b ab a2 b2 5 12 H) Solve arc sin arc sin . x 0 x x 2 G) If cos1 3 I) Solve sin1 x sin1 2 x J) x2 1 Prove that cos tan1 sin cot1 x . x2 2 K) If cos1 p cos1 q cos1 r , then prove that p 2 q 2 r 2 2 pqr 1 L) If sin1 1 q 2 tan1 2 x , then prove that x p q . cos1 2 2 1 pq 1 q 1 p 1 x2 2p M) If a , b , c are distinct non-zero real numbers having the same sign, prove that ab 1 1 bc 1 1 ca 1 cot1 cot cot or 2 ab b c c a N) If sin1 x sin1 y sin 1 z , then prove that x 1 x 2 y 1 y 2 z 1 z 2 2 xyz O) i) If tan1 x tan1 y tan1 z , then prove that x y z xyz ii) If tan1 x tan1 y tan1 x P) , then prove that xy yz zx 1 2 1 x 2 1 x 2 , then prove that x 2 sin 2 If tan1 2 2 1 x 1 x Q) Solve the following equation for x : x cos1 x sin1 2 6 17. (I) A) In ABC , show that B) b c cos A 2s In ABC , if a b cb c a 3bc , find A . C) If a 4, b 5, c 7 , find cos B . 2 FIITJEE KUKATPALLY CENTRE: # 22-97, Plot No.1, Opp. Patel Kunta Huda Park, Vijaynagar Colony, Hyderabad - 500 072. Ph.: 040-64601123 Regd. Off.: 29A, ICES House, Kalu Sarai, Sarvapriya Vihar, New Delhi - 110 016. Ph: 011 - 2651 5949, 2656 9493, Fax: 2651 3942 D) In ABC , find b cos 2 C B c cos 2 . 2 2 A bc , find angle B . 2 a E) If cot F) Prove that a b cos C c cos B b 2 c 2 G) In ABC , if 1 1 3 , show that C 60 ac bc abc H) In ABC , show that b2 c 2 a 2 sin B C sin B C I) abc Show that a 2 cot A b 2 cot B c 2 cot C R J) In ABC , prove that 1 1 1 1 r1 r2 r3 r K) Show that r r1 r2 r3 2 (II) L) Prove that r1 r2 r3 r1r2 r2 r3 r3r1 a M) If r : R : r1 2 : 5 : 12 , then prove that the triangle is right angled at A. N) In an equilateral triangle, find the value of r . R O) If A 90 o , show that 2 r R b c P) In ABC , if r1 8, r2 12, r3 24, find a , b , c . A B C 2 cot cot 2 2 2 a b c Q) Prove cot A cot B cot C a2 b2 c 2 cot SECTION – C III. 5 7 = 35 M Long Answer Type questions: (i) Attempt any five questions (ii) Each question carries seven marks 18. 1 A) Let f : A B, g : B C be bijections. Then gof B) f 1 og1 . Let f : A B , I A and I B be identity functions on A and B respectively. Then foI A f I Bof . C) Let f : A B be a bijection. Then fof 1 I B and f 1 of I A . D) Let f : A B be a function. Then f is a bijection if and only if there exists a function g : B A such that fog I B and gof I A and, in this case, g f 1 . FIITJEE KUKATPALLY CENTRE: # 22-97, Plot No.1, Opp. Patel Kunta Huda Park, Vijaynagar Colony, Hyderabad - 500 072. Ph.: 040-64601123 Regd. Off.: 29A, ICES House, Kalu Sarai, Sarvapriya Vihar, New Delhi - 110 016. Ph: 011 - 2651 5949, 2656 9493, Fax: 2651 3942 E) Let f : A B , g : B C and h : C D . Then ho gof hog of , that is, composition of functions is associative. F) Let f 1, a ,2, c ,4, d ,3, b g1 2, a , 4, b ,1, c , 3, d , and then show that gof 1 f 1 og1 . 19. A) Use Mathematical Induction to prove the formula 2 3.2 4.2 2 ... upto n terms n.2 n , n N . B) Show that, n N , 1 1 1 n ....upto n terms 1.4 4.7 7.10 3n 1 C) If x and y are natural numbers and x y , using mathematical induction, show that xn y n is divisible by x y , for all n N D) Using mathematical induction, show that xm y m is divisible by x y , if m is an odd natural number and x , y are natural numbers. E) Show that 49n 16n 1 is divisible by 64 for all positive integers n . F) Use mathematical induction to prove that 2.42 n1 33 n1 is divisible by 11, n N . Using Mathematical Induction, prove the following, for all n N n n 2 6n 11 G) 2.3 3.4 4.5 ...upto n terms H) 1 1 1 1 n ... 1.3 3.5 5.7 2 n 12 n 1 2n 1 I) 12 2 2 .... n 2 J) 3.52 n1 2 3n1 is divisible by 17. K) 1.2.3 2.3.4 3.4.5 ...upto n terms 3 n3 3 n n 1n 2n 3 4 FIITJEE KUKATPALLY CENTRE: # 22-97, Plot No.1, Opp. Patel Kunta Huda Park, Vijaynagar Colony, Hyderabad - 500 072. Ph.: 040-64601123 Regd. Off.: 29A, ICES House, Kalu Sarai, Sarvapriya Vihar, New Delhi - 110 016. Ph: 011 - 2651 5949, 2656 9493, Fax: 2651 3942 L) 13 13 2 3 13 2 3 33 n ....upto n terms 2n 2 9n 13 1 13 13 5 24 2 n n 1 n 2 M) 12 12 2 2 12 2 2 32 ....upto n terms 12 20. bc ca ab a b c a) Show that c a a b b c 2 b c a . ab bc 1 a2 b) Show that 1 b2 1 c2 c) Show that ca c a b a3 b3 a bb cc a ab bc ca c3 abc 2a 2a 3 2b bca 2b a b c 2c 2c c a b x2 2x 3 3x 4 2x 9 3x 16 0 x 8 2x 27 3x 64 d) Find the value of x if x 4 e) Show that a b 2c a b 3 c b c 2a b 2 a b c . c a c a 2b 2 2bc a2 a b c f) Show that b c a c2 c a b b2 2a ab ca ca cb c2 2ac b2 a2 b2 2 a2 a 3 b3 c 3 3abc . 2ab c2 g) Show that a b 2b b c 4 a bb cc a . 21. 2c 1 2 3 1 h) If A 0 1 4 then find A ' 2 2 1 1 2 2 i) If A 2 1 2 then show that the adjoint of A is 3A' . Find A1 . 2 2 1 a) Solve the following equations by Gauss-Jordan method 3x 4y 5z 18 , 2x y 8z 13 , 5x 2y 7z 20 b) Solve the following equations by Gauss-Jordan method 5x 6y 4z 15 , 7x 4y 3z 19 , 2x y 6z 46 c) Solve the following system of equations by Gauss – Jordan method. x y z 3 , 2x 2y z 3 , x y z 1 . d) By using Gauss-Jordan method, show that the following system has no solution. 2x 4y z 0 , x 2y 2z 5 , 3x 6y 7z 2 . e) Solve 3x 4y 5z 18 , 2x y 8z 13 , 5x 2y 7z 20 by using matrix inversion method. f) Solve 3x 4y 5z 18 , 2x y 8z 13 , 5x 2y 7z 20 by using Cramer’s Rule. FIITJEE KUKATPALLY CENTRE: # 22-97, Plot No.1, Opp. Patel Kunta Huda Park, Vijaynagar Colony, Hyderabad - 500 072. Ph.: 040-64601123 Regd. Off.: 29A, ICES House, Kalu Sarai, Sarvapriya Vihar, New Delhi - 110 016. Ph: 011 - 2651 5949, 2656 9493, Fax: 2651 3942 g) Examine whether the following systems of equations are consistent or inconsistent and if consistent find the complete solution. x y z 4 , 2x 5y 2z 3 , x 7y 7z 5 . h) Apply the test of rank to examine whether the following equations are consistent. 2 x y 3z 8 , x 2 y z 4 , 3x y 4 z 0 and if consistent find the complete solution. i) Show that the following system of equations is consistent and solve it completely: x y z 3 , 2x 2 y z 3 , x y z 1 j) Find the nontrivial solutions if any, for the following system of equations: 2 x 5y 6 z 0 , x 3y 8z 0 , 3x y 4 z 0 22. A) Let a , b , c be three vectors. Then prove that i) a b c a.c b b.c a B) For any four vectors ii) a b c a.c b a.bc a,b,c and a b .c d d a.c a.d b.c b.d and in particular a b 2 a2 b 2 a.b 2 . C) Find the volume of the parallelopiped whose coterminus edges are represented by the vectors 2i 3 j k , i j 2 k and 2i j k . D) For any four vectors a,b,c and d a b c d a c d b b c d a and a b c d a b d c a b c d E) Find the shortest distance between the skew lines r 6i 2 j 2 k t i 2 j 2 k and r 4i k s 3i 2 j 2 k F) Find the shortest distance between the lines r 6 i 2 j 2 k i 2 j 2 k and r 4 i k 3i 2 j 2 k G) If A 1, 2, 1 , B 4,0, 3 , C 1,2, 1 and D 2, 4, 5 , find the distance between AB and CD. H) Let b 2i j k , c i 3k . If a is a unit vector then find the maximum value of a b c . I) 23. Let a i j , b j k , c k i . Find unit vector d such that a.d 0 b c d . All example problems page. 283 - 288 Exercise 6F 2(ii) , 3(i, ii), 4(i,ii), 5(i,ii,iii), 10(i,ii) 24. B C b c A A) In ABC , tan cot 2 bc 2 B) 2 Show that b c cos 2 C) Show that A A 2 b c sin 2 a 2 2 2 c b cos A cos B b c cos A cos C D) If a b c sec , prove that tan E) Show that a cos 2 2 bc A sin . b c 2 A B C b cos 2 c cos 2 s 2 2 2 R FIITJEE KUKATPALLY CENTRE: # 22-97, Plot No.1, Opp. Patel Kunta Huda Park, Vijaynagar Colony, Hyderabad - 500 072. Ph.: 040-64601123 Regd. Off.: 29A, ICES House, Kalu Sarai, Sarvapriya Vihar, New Delhi - 110 016. Ph: 011 - 2651 5949, 2656 9493, Fax: 2651 3942 F) Prove that a 3 cos B C b 3 cos C A c 3 cos A B 3abc G) Prove that a cos A b cos B c cos C bc a ca b ab c H) If b c 3a , then find the value of cot B C cot . 2 2 3 , then show that the triangle is equilateral. 2 I) If cos A cos B cos C J) If a 2 b 2 c 2 8 R 2 , then prove that the triangle is right angled. K) Page. 389 (Examples 27,28) L) Page. 392 (Problems 13 to 18) 1 M) Show that r2 1 r12 1 r2 2 1 r32 a2 b 2 c 2 2 r r r 1 1 N) Show that 1 2 3 bc ca ab r 2 R O) Show that r r3 r1 r2 4 R cos B . P) ab r1r2 bc r2 r3 ca r3r1 r3 r1 r2 Show that Q) In ABC , prove that r1 r2 r3 r 4 R . R) Show that cos A cos B cos C 1 r R S) Prove that r12 r2 2 r32 r 2 16 R 2 a 2 b 2 c 2 T) If p , p , p 1 2 3 are altitudes drawn from vertices A, B, C to the opposite sides of a triangle respectively, then show that i) 1 1 1 1 p p p r 1 2 3 ii) 1 1 1 1 p p p r 1 2 U) If a 13, b 14, c 15 , show that R 3 3 iii) p p p 1 2 3 abc 2 8R 3 83 abc 65 21 , r 4, r , r 12 and r 14 . 1 2 3 8 2 V) If r1 2, r2 3, r3 6 and r 1, prove that a 3, b 4 and c 5 . wish you all the best FIITJEE KUKATPALLY CENTRE: # 22-97, Plot No.1, Opp. Patel Kunta Huda Park, Vijaynagar Colony, Hyderabad - 500 072. Ph.: 040-64601123 Regd. Off.: 29A, ICES House, Kalu Sarai, Sarvapriya Vihar, New Delhi - 110 016. Ph: 011 - 2651 5949, 2656 9493, Fax: 2651 3942
© Copyright 2026 Paperzz