The FUNDAMENTAL Theorem of Calculus (yay!) Warm-up Suppose a particle is traveling at velocity v (t) = t 2 from t = 1 to t = 2. if the particle starts at y (0) = y0 , 1. what is the function y (t) which gives the particles position as a function of time (will have a y0 in it)? 2. how far does the particle travel from t = 1 to t = 2? Compare your answer to the upper and lower estimates of the area under the curve f (x) = x 2 from x = 1 to x = 2: n ✓ X i=1 Upper ◆ ✓ ◆ i 2 1 1+ ⇤ n n n 10 100 1000 Upper 2.485 2.34835 2.33483 n 1✓ X i=0 Lower ◆ ✓ ◆ i 2 1 1+ ⇤ n n Lower 2.185 2.31835 2.33183 The Fundamental Theorem of Calculus Theorem (the baby case) If F (x) is any function satisfying Z Q. What is A. F (x) = So Z 2 Z x3 3 2 d dx F (x) = f (x), then b f (x)dx = F (b) F (a) a x 2 dx? 1 +C x 2 dx = F (2) F (1) = 1 = 8 3 ✓ 23 +C 3 1 7 = ⇡ 2.333 3 3 ◆ ✓ 13 +C 3 ◆ The Fundamental Theorem of Calculus Theorem (the baby case) If F (x) is any function satisfying Z Q. What is A. F (x) = So Z 2 1 Z 2 b f (x)dx = F (x) a d dx F (x) b x=a = f (x), then = F (b) F (a) x 2 dx? 1 x3 3 x3 x 2 dx = 3 = 8 3 2 = x=1 ✓ 23 3 ◆ ✓ 1 7 = ⇡ 2.333 3 3 13 3 ◆ (same answer!) Examples Use the fundamental theorem of calculus, Z b f (x)dx = F (b) F (a) a to calculate Z 3 1. 3x dx 2. 3. 4. Z Z Z 2 1 x 3 dx 1 ⇡ sin(x) dx 0 0 sin(x) dx ⇡ The Fundamental Theorem of Calculus Theorem (the big case) If F (x) is any function satisfying Z b(x) f (t)dt = F (t) a(x) Q. What is Z ln(x) d dt F (t) b(x) t=a(x) = f (t), then = F (b(x)) F (a(x)) t 2 dt? sin(x) 1 A. F (t) = t 3 . 3 So Z ln(x) sin(x) 1 t 2 dt = t 3 3 ln(x) = t=sin(x) ✓ 1 (ln(x))3 3 ◆ ✓ ◆ 1 (sin(x))3 . 3 Examples Use the fundamental theorem of calculus, Z b(x) f (t)dt = F (b(x)) F (a(x)) a(x) to calculate Z cos(x) 1. 3t dt sin(x) 2. 3. Z Z 5x 2 3 t 3 dt x+1 0 sin(t) dt arccos(x) For reference, we calculated f (t) = t 2 Notice: ✓ d 1 (ln(x))3 dx 3 Z b(x) f (t) dt where a(x) a(x) = sin(x) 1 (sin(x))3 3 ◆ b(x) = ln(x). 1 (ln(x))2 cos(x)(sin(x))2 x = b 0 (x)f (b(x)) a0 (x)f (a(x)). = In general: Z d dx b(x) f (t) dt = b 0 (x)f (b(x)) a0 (x)f (a(x)). a(x) (Don’t even have to know F (t)!) Why? d Calculate dx Z sin(x) 2 e t dt. tan(x) Z 2 Answer: We can’t even calculate e t dt! Example: 2 (There is no elementary function F (t) which satisfies F 0 (t) = e t ) But we know So Z sin(x) Z 2 e t dt is a function. Call it F (t). 2 e t dt = F (sin(x)) F (tan(x)). tan(x) Therefore d dx Z sin(x) tan(x) 2 e t dt = d (F (sin(x)) dx = cos(x)F 0 (sin(x)) = cos(x)f (sin(x)) = cos(x)e (sin(x)) 2 F (tan(x))) sec2 (x)F 0 (tan(x)) sec2 (x)f (tan(x)) sec2 (x)e (tan(x)) 2 Part 2: Integration by substitution Warmup Fill in the blank: d 1. Since cos(x 2 + 1) = dx Z so 2. Since , dx = cos(x 2 + 1) + C . d ln | cos(x)| = dx , so (Example: d 3 dx x dx Z = 3x 2 , so dx = ln | cos(x)| + C . R 3x 2 dx = x 3 + C .) Undoing chain rule In general: d f (g (x)) = f 0 (g (x)) ⇤ g 0 (x), dx Z f 0 (g (x)) ⇤ g 0 (x)dx = f (g (x)) + C . so Example: Calculate the (extremely suggestively written) integral Z cos(x 3 + 5x 10) ⇤ (3x 2 + 5 ⇤ 1 + 0)dx = sin(x 3 + 5x 10) + C Check: d dx sin(x 3 + 5x 10) = cos(x 3 + 5x 10) ⇤ (3x 2 + 5)X Less obvious chain rules. Look for a buried function g (x) and it’s derivative g 0 (x) which can be paired with dx: Examples: Z cos(x) dx = sin(x) + 1 Z Z p p 1 2 x x + 1dx = x 2 + 1 ⇤ 2x dx 2 Z Z 1 ⇤ cos(x) dx sin(x) + 1 p Z p cos( x) 1 p dx = cos( x) ⇤ p dx 2 x 2 x Method of Substitution Look for a buried function g (x) and it’s derivative g 0 (x) which can be paired with dx. Z cos(x) Example: dx sin(x) + 1 Let u = g (x). Let u = sin(x) + 1 Calculate du. du dx = cos(x) so du = cos(x)dx Clear out all of the x’s, replacing them with u’s. Z 1 du u Calculate the new integral. Substitute back into x’s. Check d dx R 1 u du = ln |u| + C ln |u| + C = ln | sin(x) + 1| + C ln | sin(x) + 1| + C = 1 sin(x)+1 ⇤ cos(x)X Method of Substitution Look for a buried function g (x) and it’s derivative g 0 (x) which can be paired with dx. Z p Example: x x 2 + 1 dx Let u = x 2 + 1 Let u = g (x). Calculate c ⇤ du. du dx Clear out all of the x’s, replacing them with u’s. Z Calculate the new integral. 1 2 Substitute back into x’s. Check d 1 2 dx 3 (x = 2x so 12 du = x dx p R u ⇤ 12 du u 1/2 du = 1 2 2 3/2 3u +C = 13 (x 2 + 1)3/2 + C + 1)3/2 + C = 13 2 3 2 (x + 1)1/2 ⇤ 2xX Give it a try: Look for a buried function g (x) and it’s derivative g 0 (x) which can be paired with dx. Example: Let u = g (x). Calculate c ⇤ du. Clear out all of the x’s, replacing them with u’s. Calculate the new integral. Substitute back into x’s. Z p e x p dx x Extra practice: Integrals with substitution (Check answers by taking a derivative and/or on Wolfram Alpha) 1. 2. 3. Z Z Z 3x)4 dx 17. Z x dx 1 + x4 5 dx 18. Z p x5 dx 1 + x3 19. Z p x dx 1+x 20. Z p 1 x x4 1 21. Z p x x 1 dx (7 p 3x Z p 1 dx 4x + 3 5. Z p 3 6. 7. Z 8. Z x3 dx 1 + x8 16. 4. Z Z (2x + 9)5 dx 1 4x dx 1 3)3/2 (2x dx 4x dx +3 2x2 22. x+1 dx x2 + 2x 3 23. 24. 9. Z 4x 5 dx 2x2 5x + 1 10. Z 9x2 4x + 5 dx 3x3 2x2 + 5x + 1 11. Z p x2 12. Z p 2x 1 dx x2 x 1 13. Z p dx p x+a+ x+b 14. Z p 15. Z x2 dx 1 + x6 2x + 3 + 3x dx 1 3x 2 p 5 dx Z Z p x) 1 + x dx (1 p x2 1 dx p x 3x 2 dx x 25. Z (2x 26. Z dx 3 5x 27. 3x Z 28. 29. 30. Z Z Z Z dx p 3) p x2 1 + x dx sin 3x dx cos(5 + 6x) dx sin(5 3x) dx 3x + 5 dx 31. 32. 33. Z Z Z 45. Z sin 2x dx a2 cos2 x + b2 sin2 x sin x cos x dx 46. Z 2 cos x 3 sin x dx 3 cos x + 2 sin x sin3 x cos x dx 47. Z 1 + cos x dx (x + sin x)3 48. Z sin x dx (1 + cos x)2 49. Z x2 sin x3 dx sin x dx sin x cos x csc2 (2x + 5) dx 34. Z p 35. Z p cos x p dx x 36. Z sin(ax + b) cos(ax + b) dx 50. Z cos3 x dx 51. Z 52. Z 53. Z cos 2x (sin x + cos x)2 54. Z cos x sin x (1 + sin 2x) sec2 x dx 1 + tan x 55. Z x sin3 (x2 ) cos(x2 ) dx sin x dx 1 + cos x 56. p sin x dx 2 + 3 cos x Z 57. 2x sec3 (x2 + 3) tan(x2 + 3) dx sin 2x dx a2 + b2 sin2 x Z 58. Z sin 2x dx (a + b cos 2x)2 37. 38. Z Z 39. Z 40. Z 41. Z 42. 43. 44. Z Z Z cos x sin x dx (1/x2 ) cos(1/x) dx 2x sin(x2 + 1) dx tan p x sec2 p x p x dx 1 dx tan x 1 dx cot x sec2 x 1 tan2 x dx
© Copyright 2026 Paperzz